1.Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).ADS CAS Google Scholar 2.Mereghetti, S., Pons, J. A. & Melatos, A. Magnetars: properties, origin and evolution. Space Sci. Rev. 191, 315–338 (2015).ADS Google Scholar 3.Duncan, R. C. & Thompson, C. Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. Astrophys. J. 392, L9–L13 (1992).ADS CAS Google Scholar 4.Mazets, E. P., Golenetskii, S. V., Il’inskii, V. N., Aptekar’, R. L. & Guryan, Yu. A. Observations of a flaring X-ray pulsar in Dorado. Nature 282, 587–589 (1979).ADS Google Scholar 5.Ofek, E. O. et al. The short-hard GRB 051103: observations and implications for its nature. Astrophys. J. 652, 507–511 (2006).ADS CAS Google Scholar 6.Barat, C. et al. Fine time structure in the 1979 March 5 gamma ray burst. Astron. Astrophys. 126, 400–402 (1983).ADS Google Scholar 7.Strohmayer, T. E. & Watts, A. L. Discovery of fast X-ray oscillations during the 1998 giant flare from SGR 1900+14. Astrophys. J. Lett. 632, L111–L114 (2005).ADS CAS Google Scholar 8.Israel, G. L. et al. The discovery of rapid X-ray oscillations in the tail of the SGR 1806-20 hyperflare. Astrophys. J. 628, L53–L56 (2005).ADS Google Scholar 9.Strohmayer, T. E. & Watts, A. L. The 2004 hyper flare from SGR 1806-20: further evidence for global torsional vibrations. Astrophys. J. 653, 593–601 (2006).ADS CAS Google Scholar 10.Pumpe, D., Gabler, M., Steininger, T. & Enβlin, T. A. Search for quasi-periodic signals in magnetar giant flares – Bayesian inspection of SGR 1806-20 and SGR 1900+14. Astron. Astrophys. 610, A61 (2018).ADS Google Scholar 11.Marisaldi, M., Mezentsev, A., Østgaard, N., Reglero, V. & Neubert, T. GRB 200415A: ASIM observation. GCN Circular 27622 (2020).12.Svinkin, D. et al. A bright γ-ray flare interpreted as a giant magnetar flare in NGC 253. Nature 589, 211–213 (2021).ADS CAS PubMed Google Scholar 13.Roberts, O. R. et al. Rapid variability of a giant flare from a magnetar in NGC 253. Nature 589, 207–210 (2021).ADS CAS PubMed Google Scholar 14.The Fermi-LAT Collaboration. High-energy emission from a magnetar giant flare in the Sculptor galaxy. Nat. Astron. 5, 385–391 (2021).ADS Google Scholar 15.Yang, J. et al. GRB 200415A: a short gamma-ray burst from a magnetar giant flare? Astrophys. J. 899, 106 (2020).ADS CAS Google Scholar 16.Zhang, H. M., Liu, R.-Y., Zhong, S.-Q. & Wang, X.-Y. Magnetar giant flare origin for GRB 200415A inferred from a new scaling relation. Astrophys. J. Lett. 903, 32 (2020).ADS Google Scholar 17.Burns, E. et al. Identification of a local sample of gamma-ray bursts consistent with a magnetar giant flare origin. Astrophys. J. Lett. 907, 28 (2021).ADS Google Scholar 18.Neubert, T. et al. The ASIM mission on the International Space Station. Space Sci. Rev. 215, 26 (2019). Google Scholar 19.Østgaard, N. et al. The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM payload on the International Space Station. Space Sci. Rev. 215, 23 (2019).ADS Google Scholar 20.Leahy, D. A. et al. On searches for pulsed emission with application to four globular cluster X-ray sources: NGC 1851, 6441, 6624 and 6712. Astrophys. J. 266, L160–L170 (1983). Google Scholar 21.Buccheri, R. et al. Search for pulsed γ-ray emission from radio pulsars in the COS-B data. Astron. Astrophys. 128, 245–251 (1983).ADS CAS Google Scholar 22.Gehrels, N. et al. The Swift gamma-ray burst mission. AAstrophys. J. 611, 1005 (2004).23.Barthelmy, S. D. et al. The Burst Alert Telescope on the Swift Midex mission. Space Sci. Rev. 120, 143–164 (2005).24.Tohuvavohu, A. et al. Gamma-Ray Urgent Archiver for Novel Opportunities (GUANO): Swift/BAT event data dumps on demand to enable sensitive subthreshold GRB searches. AAstrophys. J. 900, 35 (2020).25.Mahlmann, J. F., Akgün, T., Pons, J. A., Aloy, M. A. & Cerdá-Durán, P. Instability of twisted magnetar magnetospheres. Mon. Not. R. Astron. Soc. 490, 4858–4876 (2019).ADS CAS Google Scholar 26.Parfrey, K., Beloborodov, A. M. & Hui, L. Twisting, reconnecting magnetospheres and magnetar spindown. Astrophys. J. Lett. 754, 12 (2012).ADS Google Scholar 27.Li, X., Zrake, J. & Beloborodov, A. M. Dissipation of Alfvén waves in relativistic magnetospheres of magnetars. Astrophys. J. 881, 13 (2019).ADS CAS Google Scholar 28.Duncan, R. C. Global seismic oscillations in soft gamma repeaters. Astrophys. J. 498, L45–L49 (1998).ADS Google Scholar 29.Gabler, M., Cerdá-Durán, P., Stergioulas, N., Font, J. A. & Müller, E. Constraining properties of high-density matter in neutron stars with magneto-elastic oscillations. Mon. Not. R. Astron. Soc. 476, 4199–4212 (2018).ADS CAS Google Scholar 30.Chanrion, O. et al. The Modular Multispectral Imaging Array (MMIA) of the ASIM payload on the International Space Station. Space Sci. Rev. 215, 28 (2019).ADS Google Scholar 31.Vaughan, S. A Bayesian test for periodic signals in red noise. Mon. Not. R. Astron. Soc. 402, 307–320 (2010).ADS CAS Google Scholar 32.Huppenkothen, D. et al. Quasi-periodic oscillations and broadband variability in short magnetar bursts. Astrophys. J. 768, 87 (2013).ADS Google Scholar 33.Huppenkothen, D. et al. Stingray: a modern Python library for spectral timing. Astrophys. J. 881, 39 (2019).ADS CAS Google Scholar 34.McDermott, P. N., van Horn, H. M. & Hansen, C. J. Nonradial oscillations of neutron stars. Astrophys. J. 325, 725–748 (1988).ADS Google Scholar 35.Vaughan, S. A simple test for periodic signals in red noise. Astron. Astrophys. 431, 391–403 (2005).ADS CAS Google Scholar 36.Sotani, H., Kokkotas, K. D. & Stergioulas, N. Torsional oscillations of relativistic stars with dipole magnetic fields. Mon. Not. R. Astron. Soc. 375, 261–277 (2007).ADS Google Scholar 37.Brazier, K. T. S. Confidence intervals from the Rayleigh test. Mon. Not. R. Astron. Soc. 268, 709–712 (1994).ADS Google Scholar 38.Timokhin, A. N., Eichler, D. & Lubarsky, Yu. On the nature of quasi-periodic oscillations in the tail of soft gamma repeater giant flares. Astrophys. J. 680, 1398–1404 (2008).ADS Google Scholar 39.Gabler, M., Cerdá-Durán, P., Stergioulas, N., Font, J. A. & Müller, E. Modulating the magnetosphere of magnetars by internal magneto-elastic oscillations. Mon. Not. R. Astron. Soc. 443, 1416–1424 (2014).ADS Google Scholar 40.Gabler, M. et al. Magneto-elastic oscillations modulating the emission of magnetars. Astron. Nachr. 338, 1105–1108 (2017).ADS CAS Google Scholar 41.Watts, A. L. & Strohmayer, T. E. Detection with RHESSI of high-frequency X-ray oscillations in the tail of the 2004 hyperflare from SGR 1806-20. Astrophys. J. 637, L117–L120 (2006).ADS CAS Google Scholar 42.Huppenkothen, D., Heil, L. M., Watts, A. L. & Göğüş, E. Quasi-periodic oscillations in short recurring bursts of magnetars SGR 1806-20 and SGR 1900+14 observed with RXTE. Astrophys. J. 795, 114 (2014).ADS Google Scholar 43.Miller, M. C., Chirenti, C. & Strohmayer, T. E. On the persistence of QPOs during the SGR 1806-20 giant flare. Astrophys. J. 871, 95 (2019).ADS CAS Google Scholar 44.Steiner, A. W. & Watts, A. L. Constraints on neutron star crusts from oscillations in giant flares. Phys. Rev. Lett. 103, 181101 (2009).ADS PubMed Google Scholar 45.Carrasco, F., Viganò, D., Palenzuela, C. & Pons, J. A. Triggering magnetar outbursts in 3D force-free simulations. Mon. Not. R. Astron. Soc. 484, L124–L129 (2019).ADS CAS Google Scholar 46.Li, X. & Beloborodov, A. M. Plastic damping of Alfvén waves in magnetar flares and delayed afterglow emission. Astrophys. J. 815, 25 (2015).ADS Google Scholar 47.Thompson, C. & Duncan, R. C. The giant flare of 1998 August 27 from SGR 1900+14. II. Radiative mechanism and physical constraints on the source. Astrophys. J. 561, 980–1005 (2001).ADS Google Scholar Page 2 aTime referred to ASIM T0, corresponding to Fermi time intervals (ref. 13). bC statistics is used instead of χ2 owing to the low number of counts available. cIn the 60 keV–10 MeV range, 68% confidence. dIn the 8 keV–10 MeV range, 68% confidence. Data presented in table 1 of ref. 13.
https://www.nature.com/articles/s41586-021-04101-1
Very-high-frequency oscillations in the main peak of a magnetar giant flare
