Thoracic skeletal muscle quantification using computed tomography and prognosis of elderly ICU patients

1.Flaatten, H. et al. The status of intensive care medicine research and a future agenda for very old patients in the ICU. Intensive Care Med. 43, 1319–1328. https://doi.org/10.1007/s00134-017-4718-z (2017).CAS  Article  PubMed  Google Scholar  2.Guidet, B. et al. Caring for the critically ill patients over 80: A narrative review. Ann. Intensive Care. 8, 114. https://doi.org/10.1186/s13613-018-0458-7 (2018).Article  PubMed  PubMed Central  Google Scholar  3.Nguyen, Y. L., Angus, D. C., Boumendil, A. & Guidet, B. The challenge of admitting the very elderly to intensive care. Ann. Intensive Care. 1, 29. https://doi.org/10.1186/2110-5820-1-29 (2011).Article  PubMed  PubMed Central  Google Scholar  4.Muscaritoli, M. et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) ‘cachexia-anorexia in chronic wasting diseases’ and ‘nutrition in geriatrics’. Clin. Nutr. 29, 154–159. https://doi.org/10.1016/j.clnu.2009.12.004 (2010).CAS  Article  PubMed  Google Scholar  5.Deluche, E. et al. Impact of body composition on outcome in patients with early breast cancer. Support Care Cancer. https://doi.org/10.1007/s00520-017-3902-6 (2017).Article  PubMed  PubMed Central  Google Scholar  6.Kim, E. Y. et al. Prognostic significance of CT-determined sarcopenia in patients with small-cell lung cancer. J. Thorac. Oncol. 10, 1795–1799. https://doi.org/10.1097/jto.0000000000000690 (2015).CAS  Article  PubMed  Google Scholar  7.Kim, E. Y. et al. Evaluation of sarcopenia in small-cell lung cancer patients by routine chest CT. Support Care Cancer. 24, 4721–4726. https://doi.org/10.1007/s00520-016-3321-0 (2016).Article  PubMed  Google Scholar  8.Zuckerman, J. et al. Psoas muscle area and length of stay in older adults undergoing cardiac operations. Ann. Thorac. Surg. 103, 1498–1504. https://doi.org/10.1016/j.athoracsur.2016.09.005 (2017).Article  PubMed  Google Scholar  9.Heymsfield, S. B., Gonzalez, M. C., Lu, J., Jia, G. & Zheng, J. Skeletal muscle mass and quality: Evolution of modern measurement concepts in the context of sarcopenia. Proc. Nutr. Soc. 74, 355–366. https://doi.org/10.1017/s0029665115000129 (2015).Article  PubMed  Google Scholar  10.Fuseya, Y. et al. Quantitative assessment of erector spinae muscles in patients with chronic obstructive pulmonary disease. Novel chest computed tomography-derived index for prognosis. Ann. Am. Thorac. Soc. https://doi.org/10.1513/AnnalsATS.201507-446OC (2016).Article  PubMed  Google Scholar  11.Mathur, S., Rodrigues, N., Mendes, P., Rozenberg, D. & Singer, L. G. Computed tomography-derived thoracic muscle size as an indicator of sarcopenia in people with advanced lung disease. Cardiopulm. Phys. Ther. J. 28, 99–105. https://doi.org/10.1097/cpt.0000000000000054 (2017).Article  Google Scholar  12.McDonald, M. L. et al. Quantitative computed tomography measures of pectoralis muscle area and disease severity in chronic obstructive pulmonary disease. A cross-sectional study. Ann. Am. Thorac. Soc. 11, 326–334. https://doi.org/10.1513/AnnalsATS.201307-229OC (2014).Article  PubMed  PubMed Central  Google Scholar  13.Rozenberg, D. et al. Thoracic muscle cross-sectional area is associated with hospital length of stay post lung transplantation: A retrospective cohort study. Transpl. Int. 30, 713–724. https://doi.org/10.1111/tri.12961 (2017).Article  PubMed  Google Scholar  14.Moon, S. W. et al. Thoracic skeletal muscle quantification: Low muscle mass is related with worse prognosis in idiopathic pulmonary fibrosis patients. Respir. Res. 20, 35. https://doi.org/10.1186/s12931-019-1001-6 (2019).Article  PubMed  PubMed Central  Google Scholar  15.Jaitovich, A. et al. ICU admission muscle and fat mass, survival, and disability at discharge: A prospective cohort study. Chest 155, 322–330. https://doi.org/10.1016/j.chest.2018.10.023 (2019).Article  PubMed  Google Scholar  16.Metter, E. J., Conwit, R., Tobin, J. & Fozard, J. L. Age-associated loss of power and strength in the upper extremities in women and men. J. Gerontol. A Biol. Sci. Med. Sci. 52, B267–276 (1997).CAS  Article  Google Scholar  17.Dufour, A. B., Hannan, M. T., Murabito, J. M., Kiel, D. P. & McLean, R. R. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: The Framingham Study. J. Gerontol. A Biol. Sci. Med. Sci. 52, B267-276. https://doi.org/10.1093/gerona/52a.5.b267 (1997).Article  Google Scholar  18.Walston, J. D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 24, 623–627. https://doi.org/10.1097/BOR.0b013e328358d59b (2012).Article  PubMed  PubMed Central  Google Scholar  19.Xue, Q. L., Walston, J. D., Fried, L. P. & Beamer, B. A. Prediction of risk of falling, physical disability, and frailty by rate of decline in grip strength: The women’s health and aging study. Arch. Intern. Med. 171, 1119–1121. https://doi.org/10.1001/archinternmed.2011.252 (2011).Article  PubMed  Google Scholar  20.Moisey, L. L. et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit. Care 17, R206. https://doi.org/10.1186/cc12901 (2013).Article  PubMed  PubMed Central  Google Scholar  21.Joyce, P. R., O’Dempsey, R., Kisby, G. & Anstey, C. A retrospective observational study of sarcopenia and outcomes in critically ill patients. Anaesth. Intensive Care 48, 229–235. https://doi.org/10.1177/0310057X20922234 (2020).Article  PubMed  Google Scholar  22.Ferreira, F. L., Bota, D. P., Bross, A., Mélot, C. & Vincent, J.-L. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286, 1754–1758. https://doi.org/10.1001/jama.286.14.1754 (2001).CAS  Article  PubMed  Google Scholar  23.Lone, N. I. & Walsh, T. S. Prolonged mechanical ventilation in critically ill patients: Epidemiology, outcomes and modelling the potential cost consequences of establishing a regional weaning unit. Crit. Care 15, R102. https://doi.org/10.1186/cc10117 (2011).Article  PubMed  PubMed Central  Google Scholar  24.Vetrano, D. L. et al. Association of sarcopenia with short- and long-term mortality in older adults admitted to acute care wards: Results from the CRIME study. J. Gerontol. 69, 1154–1161. https://doi.org/10.1093/gerona/glu034 (2014).Article  Google Scholar  25.Voron, T. et al. Sarcopenia impacts on short- and long-term results of hepatectomy for hepatocellular carcinoma. Ann. Surg. 261, 1173–1183. https://doi.org/10.1097/sla.0000000000000743 (2015).Article  PubMed  Google Scholar  26.Cosqueric, G. et al. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br. J. Nutr. 96, 895–901. https://doi.org/10.1017/bjn20061943 (2006).CAS  Article  PubMed  Google Scholar  27.Chang, K. V., Hsu, T. H., Wu, W. T., Huang, K. C. & Han, D. S. Is sarcopenia associated with depression? A systematic review and meta-analysis of observational studies. Age Ageing. 46, 738–746. https://doi.org/10.1093/ageing/afx094 (2017).Article  PubMed  Google Scholar  28.Looijaard, W. G. P. M. et al. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients. Crit. Care. 20, 386–386. https://doi.org/10.1186/s13054-016-1563-3 (2016).Article  PubMed  PubMed Central  Google Scholar  29.Paris, M. & Mourtzakis, M. Assessment of skeletal muscle mass in critically ill patients: Considerations for the utility of computed tomography imaging and ultrasonography. Curr. Opin. Clin. Nutr. Metab. Care. 19, 125–130. https://doi.org/10.1097/mco.0000000000000259 (2016).Article  PubMed  Google Scholar  30.Fishman, J. E. & Primack, S. L. Thoracic imaging in the intensive care unit. Appl. Radiol. 34, 8–17 (2005). Google Scholar  31.Portal, D. et al. L3 skeletal muscle index (L3SMI) is a surrogate marker of sarcopenia and frailty in non-small cell lung cancer patients. Cancer Manag. Res. 11, 2579–2588. https://doi.org/10.2147/CMAR.S195869 (2019).CAS  Article  PubMed  PubMed Central  Google Scholar  32.Fintelmann, F. J. et al. Thoracic skeletal muscle is associated with adverse outcomes after lobectomy for lung cancer. Ann. Thorac. Surg. 105, 1507–1515. https://doi.org/10.1016/j.athoracsur.2018.01.013 (2018).Article  PubMed  Google Scholar  33.Lee, G. D. et al. Computed tomography confirms a reduction in diaphragm thickness in mechanically ventilated patients. J. Crit. Care. 33, 47–50. https://doi.org/10.1016/j.jcrc.2016.02.013 (2016).Article  PubMed  Google Scholar  34.Go, S. I. et al. Prognostic impact of sarcopenia in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J. Cachexia Sarcopenia Muscle 7, 567–576. https://doi.org/10.1002/jcsm.12115 (2016).Article  PubMed  PubMed Central  Google Scholar  35.Kondrup, J., Rasmussen, H. H., Hamberg, O. & Stanga, Z. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 22, 321–336. https://doi.org/10.1016/s0261-5614(02)00214-5 (2003).Article  PubMed  Google Scholar  36.Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 40, 373–383. https://doi.org/10.1016/0021-9681(87)90171-8 (1987).CAS  Article  PubMed  Google Scholar  37.Jones, A. E., Trzeciak, S. & Kline, J. A. The Sequential Organ Failure Assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit. Care Med. 37, 1649–1654. https://doi.org/10.1097/CCM.0b013e31819def97 (2009).Article  PubMed  PubMed Central  Google Scholar  38.MacIntyre, N. R. et al. Management of patients requiring prolonged mechanical ventilation: Report of a NAMDRC consensus conference. Chest 128, 3937–3954. https://doi.org/10.1378/chest.128.6.3937 (2005).Article  PubMed  Google Scholar  39.Kizilarslanoglu, M. C., Kuyumcu, M. E., Yesil, Y. & Halil, M. Sarcopenia in critically ill patients. J. Anesth. 30, 884–890. https://doi.org/10.1007/s00540-016-2211-4 (2016).Article  PubMed  Google Scholar  40.Derstine, B. A. et al. Quantifying sarcopenia reference values using lumbar and thoracic muscle areas in a healthy population. J. Nutr. Health Aging. 21, 180–185. https://doi.org/10.1007/s12603-017-0983-3 (2017).CAS  Article  PubMed  Google Scholar  Page 2 Variables Pectoralis major Above median CSA (n = 94) Below median CSA (n = 96) P-value Age, years 78 (74, 81) 78 (74, 82) 0.70 Sex, male 56 (59.6%) 57 (60.6%) 1.00 Body mass index (kg/m2) 22.6 (20.3, 24.9) 20.7 (17.7, 22.5) < 0.01 NRS-2002 points, median (IQR) 4 (4, 7) 7 (4, 7) < 0.01 Intubation 62 (66.0%) 59 (62.1%) 0.57 Charlson comorbidity index 3 (2, 4) 2 (1, 4) 0.50 Hypertension 70 (74.5%) 65 (67.7%) 0.34 Diabetes 49 (52.1%) 43 (43.8%) 0.38 Congestive heart failure 10 (10.6%) 9 (9.4%) 0.81 Chronic renal failure 34 (26.2%) 29 (30.2%) 0.44 Chronic obstructive lung disease 11 (11.7%) 11 (11.5%) 1.00 Cancer 16 (17%) 24 (25.0%) 0.21 Reason for ICU admission Respiratory failure 40 (42.6%) 53 (55.2%) 0.08 Non-respiratory sepsis 27 (28.7%) 25 (26.0%) 0.75 Hemorrhagic shock 4 (4.3%) 2 (2.1%) 0.44 Altered mental status 12 (12.8%) 2 (2.1%) 0.01 Metabolic cause 7 (7.4%) 7 (7.3%) 1.00 Cardiovascular 4 (4.3%) 0 (0.0%) 0.06 Other 0 (0.0%) 7 (7.3%) 0.01 SOFA score at ICU admission, median (IQR) 6 (4, 11) 8 (6, 10) 0.40 Prolonged mechanical ventilation, n (%)* 10/47 (21.3%) 17/40 (42.5%) 0.03 ICU days, median (IQR) 8 (3, 14) 6 (3, 12) 0.59 ICU death, n (%) 15 (16.0%) 28 (29.2%) 0.04 Hospital days, median (IQR) 20.5 (14, 38) 19.5 (12, 41) 0.67 Hospital death, n (%) 26 (27.7%) 45 (46.9%) 0.01 Continuous variables are presented as median (interquartile range) and categorical variables are presented as numbers (percentage). CSA Cross-sectional area, ICU intensive care unit, SOFA sequential organ failure assessment. Cutoff values for lower half in pectoralis muscles are 26.5 cm2 in men, and 18.3 cm2 in women, respectively.
https://www.nature.com/articles/s41598-021-02853-4