Synergistic effects of crop residue and microbial inoculant on soil properties and soil disease resistance in a Chinese Mollisol

1.Yang, W. Y. et al. Soil properties and geography shape arbuscular mycorrhizal fungal communities in black land of China. Appl. Soil Ecol. 167, 104109. https://doi.org/10.1016/j.apsoil.2021.104109 (2021).Article  Google Scholar  2.Li, H. Y. et al. Effects of different slopes and fertilizer types on the grey water footprint of maize production in the black soil region of China. J. Clean. Prod. 246, 119077. https://doi.org/10.1016/j.jclepro.2019.119077 (2020).CAS  Article  Google Scholar  3.Li, X. Y., Wang, D. Y., Ren, Y. X., Wang, Z. M. & Zhou, Y. H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 107, 105251. https://doi.org/10.1016/j.ecolind.2019.03.028 (2019).CAS  Article  Google Scholar  4.Mao, L. G. et al. Flame soil disinfestation: A novel, promising, non-chemical method to control soilborne nematodes, fungal and bacterial pathogens in China. Crop. Prot. 83, 90–94. https://doi.org/10.1016/j.cropro.2016.02.002 (2016).ADS  Article  Google Scholar  5.Rasool, M. et al. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci. Rep. 11, 6092. https://doi.org/10.1038/s41598-021-85633-4 (2021).ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  6.Solorzano, C. D. & Malvick, D. K. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens. Field. Crop. Res. 122(3), 173–178. https://doi.org/10.1016/j.fcr.2011.02.011 (2011).Article  Google Scholar  7.An-le, H. E. et al. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J. Integr. Agric. 18(3), 599–606. https://doi.org/10.1016/S2095-3119(18)62089-1 (2019).Article  Google Scholar  8.Xu, X. G. et al. Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control 130, 108259. https://doi.org/10.1016/j.foodcont.2021.108259 (2021).CAS  Article  Google Scholar  9.Bonanomi, G., Antignani, V. & Scala, C. P. Suppression of soilborne fungal diseases with organic amendments. J. Plant. Pathol. 89(3), 311–324 (2007). Google Scholar  10.Shafique, H. A., Sultana, V., Ehteshamul-Haque, S. & Athar, M. Management of soil-borne diseases of organic vegetables. J. Plan. Protect. Res. https://doi.org/10.1515/jppr-2016-0043 (2016).Article  Google Scholar  11.Li, H. et al. Evaluation on the production of food crop straw in China from 2006 to 2014. Bioenerg. Res. 10, 949–957. https://doi.org/10.1007/s12155-017-9845-4 (2017).Article  Google Scholar  12.Zhang, P., Wei, T., Jia, Z. K., Han, Q. F. & Ren, X. L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 230–231, 41–49. https://doi.org/10.1016/j.geoderma.2014.04.007 (2014).ADS  Article  Google Scholar  13.Yang, H. S. et al. The impacts of ditch-buried straw layers on the interface soil physicochemical and microbial properties in a rice-wheat rotation system. Soil. Till. Res. 202, 146656. https://doi.org/10.1016/j.still.2020.104656 (2020).Article  Google Scholar  14.Song, X. Y. et al. Stable isotopes reveal the formation diversity of humic substances derived from different cotton straw-based materials. Sci. Total. Environ. 740, 140202. https://doi.org/10.1016/j.scitotenv.2020.140202 (2020).ADS  CAS  Article  PubMed  Google Scholar  15.Mi, Y. Z. et al. Changes in soil quality, bacterial community and anti-pepper Phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains. Eur. J. Soil. Biol. 105, 103329. https://doi.org/10.1016/j.ejsobi.2021.103329 (2021).CAS  Article  Google Scholar  16.Guo, X. X., Liu, H. T. & Wu, S. B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total. Environ. 662, 501–510. https://doi.org/10.1016/j.scitotenv.2019.01.137 (2019).ADS  CAS  Article  PubMed  Google Scholar  17.Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31(7–8), 697–710. https://doi.org/10.1016/S0146-6380(00)00049-8 (2000).CAS  Article  Google Scholar  18.Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fert. Soils. 48(5), 489–499. https://doi.org/10.1007/s00374-012-0691-4 (2012).Article  Google Scholar  19.Hu, Y. et al. Integrated biocontrol of tobacco bacterial wilt by antagonistic bacteria and marigold. Sci. Rep. 11, 16360. https://doi.org/10.1038/s41598-021-95741-w (2021).ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  20.Hyder, S. et al. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci. Rep. 10, 13859. https://doi.org/10.1038/s41598-020-69410-3 (2020).ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  21.Paterson, E., Sim, A., Osborne, S. & Murray, P. J. Long-term exclusion of plant-inputs to soil reduces the functional capacity of microbial communities to mineralise recalcitrant root-derived carbon sources. Soil. Biol. Biochem. 43(9), 1873–1880. https://doi.org/10.1016/j.soilbio.2011.05.006 (2011).CAS  Article  Google Scholar  22.Wang, H., Guo, Q., Li, X., Li, X. & Zhang, C. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens. Appl. Soil. Ecol. 148, 103488. https://doi.org/10.1016/j.apsoil.2019.103488 (2020).Article  Google Scholar  23.Ndzelu, B. S., Dou, S. & Zhang, X. W. Changes in soil humus composition and humic acid structural characteristics under different corn straw returning modes. Soil. Res. 58, 452–460. https://doi.org/10.1071/SR20025 (2020).CAS  Article  Google Scholar  24.De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total. Environ. 738, 139840. https://doi.org/10.1016/j.scitotenv.2020.139840 (2021).CAS  Article  Google Scholar  25.Wong, M. & Swift, R. S. Role of organic matter in alleviating soil acidity. in Handbook of Soil Acidity. http://espace.library.uq.edu.au/view/UQ:191317 (2003).26.Xie, W. J. et al. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil. Till. Res. 198, 104535. https://doi.org/10.1016/j.still.2019.104535 (2020).Article  Google Scholar  27.Cathal, N. et al. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil. Biol. Biochem. 48, 151–161. https://doi.org/10.1016/j.soilbio.2012.01.010 (2012).CAS  Article  Google Scholar  28.Lou, Y. L., Xu, M. G., Wang, W., Sun, X. L. & Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil. Till. Res. 113(1), 70–73. https://doi.org/10.1016/j.still.2011.01.007 (2011).Article  Google Scholar  29.Loffredo, E., Berloco, M. & Senesi, N. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicol. Environ. Saf. 69(3), 350–357. https://doi.org/10.1016/j.ecoenv.2007.11.005 (2008).CAS  Article  PubMed  Google Scholar  30.Bhatia, A. et al. Diversity of bacterial isolates during full scale rotary drum composting. Waste Manag. 33(7), 1595–1601. https://doi.org/10.1016/j.wasman.2013.03.019 (2013).CAS  Article  PubMed  Google Scholar  31.Dou, S., Zhang, J. J. & Li, K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil. Eur. J. Soil. Sci. 59(3), 532–539. https://doi.org/10.1111/j.1365-2389.2007.01012.x (2008).CAS  Article  Google Scholar  32.De, V. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9(1), 3033. https://doi.org/10.1038/s41467-018-05516-7 (2018).ADS  CAS  Article  Google Scholar  33.Sanaullah, M. et al. How do microbial communities in top and subsoil respond to root litter addition under field conditions?. Soil Biol. Biochem. 103, 28–38. https://doi.org/10.1016/j.soilbio.2016.07.017 (2016).CAS  Article  Google Scholar  34.Song, Y. et al. Identification of the produced volatile organic compounds and the involved soil bacteria during decomposition of watermelon plant residues in a Fusarium-infested soil. Geoderma 315, 178–187. https://doi.org/10.1016/j.geoderma.2017.11.021 (2018).ADS  CAS  Article  Google Scholar  35.Vida, C., Cazorla, F. M. & Vicente, A. D. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res. Microbiol. 168(6), 583–593. https://doi.org/10.1016/j.resmic.2017.03.007 (2017).CAS  Article  PubMed  Google Scholar  36.Liu, J. G., Li, X. G., Jia, Z. J., Zhang, T. L. & Wang, X. X. Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases. Appl. Soil. Ecol. 110, 34–42. https://doi.org/10.1016/j.apsoil.2016.11.001 (2017).ADS  Article  Google Scholar  37.Zhao, S. C. et al. Ciampitti dynamic of fungal community composition during maize residue decomposition process in north-central China. Appl. Soil Ecol. 167, 104057. https://doi.org/10.1016/j.apsoil.2021.104057 (2021).Article  Google Scholar  38.Zhang, J., Xu, Y., Liang, S., Ma, X. & Sun, F. Synergistic effect of klebsiella sp. fh-1 and arthrobacter sp. nj-1 on the growth of the microbiota in the black soil of northeast china. Ecotox. Environ. Safe 190, 110079. https://doi.org/10.1016/j.ecoenv.2019.110079 (2019).CAS  Article  Google Scholar  39.Wang, X. W. et al. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 84, 145–224. https://doi.org/10.1016/j.simyco.2016.11.005 (2016).CAS  Article  PubMed  PubMed Central  Google Scholar  40.Chen, W. H. et al. High-throughput sequencing analysis of endophytic fungal diversity in cynanchum sp.. S. Afr. J. Bot. 134, 349–358. https://doi.org/10.1016/j.sajb.2020.04.010 (2020).CAS  Article  Google Scholar  41.Voriskova, J. & Baldrain, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7(3), 477–486. https://doi.org/10.1038/ismej.2012.116 (2013).CAS  Article  PubMed  Google Scholar  42.Kerdraon, L., Laval, V. & Suffert, F. Microbiomes and pathogen survival in crop residues, an ecotone between plant and soil. Phytobiomes J. 3, 246–255. https://doi.org/10.1094/pbiomes-02-19-0010-rvw (2019).Article  Google Scholar  43.Rahman, S. F. S. A. et al. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012 (2018).CAS  Article  Google Scholar  44.Wachowska, U., Irzykowski, W., Jedryczka, M., Stasiulewicz-Paluch, A. D. & Glowacka, K. Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol. Sci. Technol. 23, 1110–1122. https://doi.org/10.1080/09583157.2013.812185 (2013).Article  Google Scholar  45.Liu, J. J. et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 83(0038–0017), 29–39. https://doi.org/10.1016/j.soilbio.2015.01.009 (2012).ADS  CAS  Article  Google Scholar  46.Xiong, W. et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol. Biochem. 107, 198–207. https://doi.org/10.1016/j.soilbio.2017.01.010 (2017).CAS  Article  Google Scholar  47.Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424. https://doi.org/10.1146/annurev-phyto-081211-172908 (2012).CAS  Article  PubMed  Google Scholar  48.Deng, X. H. et al. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Appl. Soil Ecol. 147, 103364. https://doi.org/10.1016/j.apsoil.2019.103364 (2020).Article  Google Scholar  49.Li, C. N. et al. Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw. Bioresour. Technol. 289, 121653. https://doi.org/10.1016/j.biortech.2019.121653 (2019).CAS  Article  PubMed  Google Scholar  50.Lydia, S., Tymon, P. M., Gundersen, B. & Inglis, D. A. Potential of endophytic fungi collected from Cucurbita pepo roots grown under three different agricultural mulches as antagonistic endophytes to Verticillium dahliae in western Washington. Microbiol. Res. 240, 126535. https://doi.org/10.1016/j.micres.2020.126535 (2020).CAS  Article  Google Scholar  51.Mehmood, M. A. et al. Sclerotia of a phytopathogenic fungus restrict microbial diversity and improve soil health by suppressing other pathogens and enriching beneficial microorganisms. J. Environ. Manag. 259, 109857. https://doi.org/10.1016/j.jenvman.2019.109857 (2020).Article  Google Scholar  52.Ding, J. L. et al. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil. Ecol. 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003 (2017).ADS  Article  Google Scholar  53.Zhao, Y. Y. et al. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose. Microbiol. Res. 242, 126624. https://doi.org/10.1016/j.micres.2020.126624 (2021).CAS  Article  PubMed  Google Scholar  54.Liu, X. S. et al. Organic amendment improves rhizosphere environment and shapes soil bacterial community in black and red soil under lead stress. J. Hazard. Mater. 416, 125805. https://doi.org/10.1016/j.jhazmat.2021.125805 (2021).CAS  Article  PubMed  Google Scholar  55.Qiao, J. Q., Tian, D. W., Huo, R., Wu, H. J. & Gao, X. W. Functional analysis and application of the cryptic plasmid pBSG3 harboring the RapQ–PhrQ system in Bacillus amyloliquefaciens B3. Plasmid 65(2), 141–149. https://doi.org/10.1016/j.plasmid.2010.11.008 (2011).CAS  Article  PubMed  Google Scholar  56.Coutte, F. et al. Effect of pps disruption and constitutive expression of srfa on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J. Appl. Microbiol. 109(2), 480–491. https://doi.org/10.1111/j.1365-2672.2010.04683.x (2010).CAS  Article  PubMed  Google Scholar  57.Leclere, V. et al. Mycosubtilin overproduction by Bacillus subtilis bbg100 enhances the organism’s antagonistic and biocontrol activities. Appl. Environ. Microb. 71(8), 4577. https://doi.org/10.1128/AEM.71.8.4577-4584.2005 (2005).ADS  CAS  Article  Google Scholar  58.Choi, S. K., Jeong, H., Kloepper, J. W. & Ryu, C. M. Genome sequen
https://www.nature.com/articles/s41598-021-03799-3