1.Yang, W. Y. et al. Soil properties and geography shape arbuscular mycorrhizal fungal communities in black land of China. Appl. Soil Ecol. 167, 104109. https://doi.org/10.1016/j.apsoil.2021.104109 (2021).Article Google Scholar 2.Li, H. Y. et al. Effects of different slopes and fertilizer types on the grey water footprint of maize production in the black soil region of China. J. Clean. Prod. 246, 119077. https://doi.org/10.1016/j.jclepro.2019.119077 (2020).CAS Article Google Scholar 3.Li, X. Y., Wang, D. Y., Ren, Y. X., Wang, Z. M. & Zhou, Y. H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 107, 105251. https://doi.org/10.1016/j.ecolind.2019.03.028 (2019).CAS Article Google Scholar 4.Mao, L. G. et al. Flame soil disinfestation: A novel, promising, non-chemical method to control soilborne nematodes, fungal and bacterial pathogens in China. Crop. Prot. 83, 90–94. https://doi.org/10.1016/j.cropro.2016.02.002 (2016).ADS Article Google Scholar 5.Rasool, M. et al. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci. Rep. 11, 6092. https://doi.org/10.1038/s41598-021-85633-4 (2021).ADS CAS Article PubMed PubMed Central Google Scholar 6.Solorzano, C. D. & Malvick, D. K. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens. Field. Crop. Res. 122(3), 173–178. https://doi.org/10.1016/j.fcr.2011.02.011 (2011).Article Google Scholar 7.An-le, H. E. et al. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J. Integr. Agric. 18(3), 599–606. https://doi.org/10.1016/S2095-3119(18)62089-1 (2019).Article Google Scholar 8.Xu, X. G. et al. Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control 130, 108259. https://doi.org/10.1016/j.foodcont.2021.108259 (2021).CAS Article Google Scholar 9.Bonanomi, G., Antignani, V. & Scala, C. P. Suppression of soilborne fungal diseases with organic amendments. J. Plant. Pathol. 89(3), 311–324 (2007). Google Scholar 10.Shafique, H. A., Sultana, V., Ehteshamul-Haque, S. & Athar, M. Management of soil-borne diseases of organic vegetables. J. Plan. Protect. Res. https://doi.org/10.1515/jppr-2016-0043 (2016).Article Google Scholar 11.Li, H. et al. Evaluation on the production of food crop straw in China from 2006 to 2014. Bioenerg. Res. 10, 949–957. https://doi.org/10.1007/s12155-017-9845-4 (2017).Article Google Scholar 12.Zhang, P., Wei, T., Jia, Z. K., Han, Q. F. & Ren, X. L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 230–231, 41–49. https://doi.org/10.1016/j.geoderma.2014.04.007 (2014).ADS Article Google Scholar 13.Yang, H. S. et al. The impacts of ditch-buried straw layers on the interface soil physicochemical and microbial properties in a rice-wheat rotation system. Soil. Till. Res. 202, 146656. https://doi.org/10.1016/j.still.2020.104656 (2020).Article Google Scholar 14.Song, X. Y. et al. Stable isotopes reveal the formation diversity of humic substances derived from different cotton straw-based materials. Sci. Total. Environ. 740, 140202. https://doi.org/10.1016/j.scitotenv.2020.140202 (2020).ADS CAS Article PubMed Google Scholar 15.Mi, Y. Z. et al. Changes in soil quality, bacterial community and anti-pepper Phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains. Eur. J. Soil. Biol. 105, 103329. https://doi.org/10.1016/j.ejsobi.2021.103329 (2021).CAS Article Google Scholar 16.Guo, X. X., Liu, H. T. & Wu, S. B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total. Environ. 662, 501–510. https://doi.org/10.1016/j.scitotenv.2019.01.137 (2019).ADS CAS Article PubMed Google Scholar 17.Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31(7–8), 697–710. https://doi.org/10.1016/S0146-6380(00)00049-8 (2000).CAS Article Google Scholar 18.Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fert. Soils. 48(5), 489–499. https://doi.org/10.1007/s00374-012-0691-4 (2012).Article Google Scholar 19.Hu, Y. et al. Integrated biocontrol of tobacco bacterial wilt by antagonistic bacteria and marigold. Sci. Rep. 11, 16360. https://doi.org/10.1038/s41598-021-95741-w (2021).ADS CAS Article PubMed PubMed Central Google Scholar 20.Hyder, S. et al. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci. Rep. 10, 13859. https://doi.org/10.1038/s41598-020-69410-3 (2020).ADS CAS Article PubMed PubMed Central Google Scholar 21.Paterson, E., Sim, A., Osborne, S. & Murray, P. J. Long-term exclusion of plant-inputs to soil reduces the functional capacity of microbial communities to mineralise recalcitrant root-derived carbon sources. Soil. Biol. Biochem. 43(9), 1873–1880. https://doi.org/10.1016/j.soilbio.2011.05.006 (2011).CAS Article Google Scholar 22.Wang, H., Guo, Q., Li, X., Li, X. & Zhang, C. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens. Appl. Soil. Ecol. 148, 103488. https://doi.org/10.1016/j.apsoil.2019.103488 (2020).Article Google Scholar 23.Ndzelu, B. S., Dou, S. & Zhang, X. W. Changes in soil humus composition and humic acid structural characteristics under different corn straw returning modes. Soil. Res. 58, 452–460. https://doi.org/10.1071/SR20025 (2020).CAS Article Google Scholar 24.De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total. Environ. 738, 139840. https://doi.org/10.1016/j.scitotenv.2020.139840 (2021).CAS Article Google Scholar 25.Wong, M. & Swift, R. S. Role of organic matter in alleviating soil acidity. in Handbook of Soil Acidity. http://espace.library.uq.edu.au/view/UQ:191317 (2003).26.Xie, W. J. et al. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil. Till. Res. 198, 104535. https://doi.org/10.1016/j.still.2019.104535 (2020).Article Google Scholar 27.Cathal, N. et al. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil. Biol. Biochem. 48, 151–161. https://doi.org/10.1016/j.soilbio.2012.01.010 (2012).CAS Article Google Scholar 28.Lou, Y. L., Xu, M. G., Wang, W., Sun, X. L. & Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil. Till. Res. 113(1), 70–73. https://doi.org/10.1016/j.still.2011.01.007 (2011).Article Google Scholar 29.Loffredo, E., Berloco, M. & Senesi, N. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicol. Environ. Saf. 69(3), 350–357. https://doi.org/10.1016/j.ecoenv.2007.11.005 (2008).CAS Article PubMed Google Scholar 30.Bhatia, A. et al. Diversity of bacterial isolates during full scale rotary drum composting. Waste Manag. 33(7), 1595–1601. https://doi.org/10.1016/j.wasman.2013.03.019 (2013).CAS Article PubMed Google Scholar 31.Dou, S., Zhang, J. J. & Li, K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil. Eur. J. Soil. Sci. 59(3), 532–539. https://doi.org/10.1111/j.1365-2389.2007.01012.x (2008).CAS Article Google Scholar 32.De, V. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9(1), 3033. https://doi.org/10.1038/s41467-018-05516-7 (2018).ADS CAS Article Google Scholar 33.Sanaullah, M. et al. How do microbial communities in top and subsoil respond to root litter addition under field conditions?. Soil Biol. Biochem. 103, 28–38. https://doi.org/10.1016/j.soilbio.2016.07.017 (2016).CAS Article Google Scholar 34.Song, Y. et al. Identification of the produced volatile organic compounds and the involved soil bacteria during decomposition of watermelon plant residues in a Fusarium-infested soil. Geoderma 315, 178–187. https://doi.org/10.1016/j.geoderma.2017.11.021 (2018).ADS CAS Article Google Scholar 35.Vida, C., Cazorla, F. M. & Vicente, A. D. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res. Microbiol. 168(6), 583–593. https://doi.org/10.1016/j.resmic.2017.03.007 (2017).CAS Article PubMed Google Scholar 36.Liu, J. G., Li, X. G., Jia, Z. J., Zhang, T. L. & Wang, X. X. Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases. Appl. Soil. Ecol. 110, 34–42. https://doi.org/10.1016/j.apsoil.2016.11.001 (2017).ADS Article Google Scholar 37.Zhao, S. C. et al. Ciampitti dynamic of fungal community composition during maize residue decomposition process in north-central China. Appl. Soil Ecol. 167, 104057. https://doi.org/10.1016/j.apsoil.2021.104057 (2021).Article Google Scholar 38.Zhang, J., Xu, Y., Liang, S., Ma, X. & Sun, F. Synergistic effect of klebsiella sp. fh-1 and arthrobacter sp. nj-1 on the growth of the microbiota in the black soil of northeast china. Ecotox. Environ. Safe 190, 110079. https://doi.org/10.1016/j.ecoenv.2019.110079 (2019).CAS Article Google Scholar 39.Wang, X. W. et al. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 84, 145–224. https://doi.org/10.1016/j.simyco.2016.11.005 (2016).CAS Article PubMed PubMed Central Google Scholar 40.Chen, W. H. et al. High-throughput sequencing analysis of endophytic fungal diversity in cynanchum sp.. S. Afr. J. Bot. 134, 349–358. https://doi.org/10.1016/j.sajb.2020.04.010 (2020).CAS Article Google Scholar 41.Voriskova, J. & Baldrain, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7(3), 477–486. https://doi.org/10.1038/ismej.2012.116 (2013).CAS Article PubMed Google Scholar 42.Kerdraon, L., Laval, V. & Suffert, F. Microbiomes and pathogen survival in crop residues, an ecotone between plant and soil. Phytobiomes J. 3, 246–255. https://doi.org/10.1094/pbiomes-02-19-0010-rvw (2019).Article Google Scholar 43.Rahman, S. F. S. A. et al. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012 (2018).CAS Article Google Scholar 44.Wachowska, U., Irzykowski, W., Jedryczka, M., Stasiulewicz-Paluch, A. D. & Glowacka, K. Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol. Sci. Technol. 23, 1110–1122. https://doi.org/10.1080/09583157.2013.812185 (2013).Article Google Scholar 45.Liu, J. J. et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 83(0038–0017), 29–39. https://doi.org/10.1016/j.soilbio.2015.01.009 (2012).ADS CAS Article Google Scholar 46.Xiong, W. et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol. Biochem. 107, 198–207. https://doi.org/10.1016/j.soilbio.2017.01.010 (2017).CAS Article Google Scholar 47.Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424. https://doi.org/10.1146/annurev-phyto-081211-172908 (2012).CAS Article PubMed Google Scholar 48.Deng, X. H. et al. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Appl. Soil Ecol. 147, 103364. https://doi.org/10.1016/j.apsoil.2019.103364 (2020).Article Google Scholar 49.Li, C. N. et al. Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw. Bioresour. Technol. 289, 121653. https://doi.org/10.1016/j.biortech.2019.121653 (2019).CAS Article PubMed Google Scholar 50.Lydia, S., Tymon, P. M., Gundersen, B. & Inglis, D. A. Potential of endophytic fungi collected from Cucurbita pepo roots grown under three different agricultural mulches as antagonistic endophytes to Verticillium dahliae in western Washington. Microbiol. Res. 240, 126535. https://doi.org/10.1016/j.micres.2020.126535 (2020).CAS Article Google Scholar 51.Mehmood, M. A. et al. Sclerotia of a phytopathogenic fungus restrict microbial diversity and improve soil health by suppressing other pathogens and enriching beneficial microorganisms. J. Environ. Manag. 259, 109857. https://doi.org/10.1016/j.jenvman.2019.109857 (2020).Article Google Scholar 52.Ding, J. L. et al. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil. Ecol. 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003 (2017).ADS Article Google Scholar 53.Zhao, Y. Y. et al. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose. Microbiol. Res. 242, 126624. https://doi.org/10.1016/j.micres.2020.126624 (2021).CAS Article PubMed Google Scholar 54.Liu, X. S. et al. Organic amendment improves rhizosphere environment and shapes soil bacterial community in black and red soil under lead stress. J. Hazard. Mater. 416, 125805. https://doi.org/10.1016/j.jhazmat.2021.125805 (2021).CAS Article PubMed Google Scholar 55.Qiao, J. Q., Tian, D. W., Huo, R., Wu, H. J. & Gao, X. W. Functional analysis and application of the cryptic plasmid pBSG3 harboring the RapQ–PhrQ system in Bacillus amyloliquefaciens B3. Plasmid 65(2), 141–149. https://doi.org/10.1016/j.plasmid.2010.11.008 (2011).CAS Article PubMed Google Scholar 56.Coutte, F. et al. Effect of pps disruption and constitutive expression of srfa on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J. Appl. Microbiol. 109(2), 480–491. https://doi.org/10.1111/j.1365-2672.2010.04683.x (2010).CAS Article PubMed Google Scholar 57.Leclere, V. et al. Mycosubtilin overproduction by Bacillus subtilis bbg100 enhances the organism’s antagonistic and biocontrol activities. Appl. Environ. Microb. 71(8), 4577. https://doi.org/10.1128/AEM.71.8.4577-4584.2005 (2005).ADS CAS Article Google Scholar 58.Choi, S. K., Jeong, H., Kloepper, J. W. & Ryu, C. M. Genome sequen
https://www.nature.com/articles/s41598-021-03799-3
Synergistic effects of crop residue and microbial inoculant on soil properties and soil disease resistance in a Chinese Mollisol
