Responses of functional traits in cavity-nesting birds to logging in subtropical and temperate forests of the Americas

1.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS  CAS  PubMed  Google Scholar  2.Chaudhary, A., Burivalova, Z., Koh, L. P. & Hellweg, S. Impact of forest management on species richness: global meta-analysis and economic trade-offs. Sci. Rep. 6, 23954 (2016).ADS  CAS  PubMed  PubMed Central  Google Scholar  3.Edwards, F. A., Edwards, D. P., Hamer, K. C. & Davies, R. G. Impacts of logging and conversion of rainforest to oil palm on the functional diversity of birds in Sundaland. Ibis 155, 313–326 (2013). Google Scholar  4.Bicknell, J. E., Struebig, M. J. & Davies, Z. G. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging. J. Appl. Ecol. 52, 379–388 (2015).PubMed  PubMed Central  Google Scholar  5.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures: animal species diversity driven by habitat heterogeneity. J. Biogeogr. 31, 79–92 (2004). Google Scholar  6.Robles, H. et al. Sylvopastoral management and conservation of the middle spotted woodpecker at the south-western edge of its distribution range. For. Ecol. Manag. 242, 343–352 (2007). Google Scholar  7.Aleixo, A. Effects of selective logging on a bird community in the brazilian atlantic forest. Condor 101, 537–548 (1999). Google Scholar  8.Robles, H., Ciudad, C. & Matthysen, E. Tree-cavity occurrence, cavity occupation and reproductive performance of secondary cavity-nesting birds in oak forests: the role of traditional management practices. For. Ecol. Manag. 261, 1428–1435 (2011). Google Scholar  9.Burivalova, Z. et al. Avian responses to selective logging shaped by species traits and logging practices. Proc. R. Soc. B. 282, 20150164 (2015).PubMed  PubMed Central  Google Scholar  10.Wiebe, K. L. Nest sites as limiting resources for cavity-nesting birds in mature forest ecosystems: a review of the evidence. J. Field Ornithol. 82, 239–248 (2011). Google Scholar  11.Politi, N., Hunter, M. & Rivera, L. Assessing the effects of selective logging on birds in Neotropical piedmont and cloud montane forests. Biodivers. Conserv. 21, 3131–3155 (2012). Google Scholar  12.Bergner, A. et al. Influences of forest type and habitat structure on bird assemblages of oak (Quercus spp.) and pine (Pinus spp.) stands in southwestern Turkey. For. Ecol. Manag. 336, 137–147 (2015). Google Scholar  13.van der Hoek, Y., Gaona, G. V. & Martin, K. The diversity, distribution and conservation status of the tree-cavity-nesting birds of the world. Divers. Distrib. 23, 1120–1131 (2017). Google Scholar  14.Aitken, K. E. H. & Martin, K. The importance of excavators in hole-nesting communities: availability and use of natural tree holes in old mixed forests of western Canada. J. Ornithol. 148, 425–434 (2007). Google Scholar  15.Cockle, K. L., Martin, K. & Wesołowski, T. Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Front. Ecol. Environ. 9, 377–382 (2011). Google Scholar  16.Schaaf, A. A. et al. Tree use, niche breadth and overlap for excavation by woodpeckers in subtropical piedmont forests of Northwestern Argentina. Acta Ornithol. 55 (2020).17.Sekercioglu, C. H. Effects of forestry practices on vegetation structure and bird community of Kibale National Park, Uganda. Biol. Conserv. 12 (2002).18.Stratford, J. A. & Robinson, W. D. Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Front. Ecol. Environ. 3, 85–92 (2005). Google Scholar  19.Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).CAS  PubMed  Google Scholar  20.Woltmann, S. Bird community responses to disturbance in a forestry concession in lowland Bolivia. 16.21.Strubbe, D. & Matthysen, E. Experimental evidence for nest-site competition between invasive ring-necked parakeets (Psittacula krameri) and native nuthatches (Sitta europaea). Biol. Conserv. 142, 1588–1594 (2009). Google Scholar  22.Rivera, L., Politi, N. & Bucher, E. H. Nesting habitat of the Tucuman Parrot Amazona tucumana in an old-growth cloud-forest of Argentina. Bird Conserv. Int. 22, 398–410 (2012). Google Scholar  23.Schaaf, A. A., Tallei, E., Politi, N. & Rivera, L. Cavity-tree use and frequency of response to playback by the Tropical Screech-Owl in northwestern Argentina. NBC 14, 99–107 (2019). Google Scholar  24.Schepps, J., Lohr, L. & Martin, T. E. Does tree hardness influence nest-tree selection by primary cavity nesters?. Auk 116, 658–665 (1999). Google Scholar  25.Rudolph, D. C., Conner, R. N. & Turner, J. Competition for red-cockaded woodpecker roost and nest cavities: effects of resin age and entrance diameter. Wilson Bull. 102(1), 23–36 (1990). Google Scholar  26.Drever, M. C. & Martin, K. Response of woodpeckers to changes in forest health and harvest: implications for conservation of avian biodiversity. For. Ecol. Manag. 259, 958–966 (2010). Google Scholar  27.Styring, A. R. & Hussin, M. Z. Effects of logging on woodpeckers in a Malaysian rain forest: the relationship between resource availability and woodpecker abundance. J. Trop. Ecol. 20, 495–504 (2004). Google Scholar  28.Ruggera, R. A., Schaaf, A. A., Vivanco, C. G., Politi, N. & Rivera, L. O. Exploring nest webs in more detail to improve forest management. For. Ecol. Manag. 372, 93–100 (2016). Google Scholar  29.Ibarra, J. T., Martin, M., Cockle, K. L. & Martin, K. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci. Rep. 7, 4467 (2017).ADS  PubMed  PubMed Central  Google Scholar  30.Dı́az, S., Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evolut. 16, 646–655 (2001).31.Córdova-Tapia, F. & Zambrano, L. Functional diversity in community ecology. ECOS 24, 78–87 (2015). Google Scholar  32.Leaver, J., Mulvaney, J., Ehlers Smith, D. A., Ehlers Smith, Y. C. & Cherry, M. I. Response of bird functional diversity to forest product harvesting in the Eastern Cape, South Africa. For. Ecol. Manag. 445, 82–95 (2019).33.Georgiev, K. B. et al. Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities. J. Appl. Ecol. 57, 1103–1112 (2020). Google Scholar  34.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005). Google Scholar  35.Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity: experimental evolution in variable environments. J. Evolut. Biol. 15, 173–190 (2002). Google Scholar  36.Scherer-Lorenzen, M. Biodiversity and ecosystem functioning: basic principles. Struct. Funct. 10 (2005).37.Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008). Google Scholar  38.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed  Google Scholar  39.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed  Google Scholar  40.Schaaf, A. A. et al. Functional diversity of tree cavities for secondary cavity-nesting birds in logged subtropical Piedmont forests of the Andes. For. Ecol. Manag. 464, 118069 (2020). Google Scholar  41.Lindenmayer, D. B., Margules, C. R. & Botkin, D. B. Indicators of biodiversity for ecologically sustainable forest management. Conserv. Biol. 14, 941–950 (2000). Google Scholar  42.Gregory, R. D. et al. The generation and use of bird population indicators in Europe. Bird Conserv. Int. 18, S223–S244 (2008). Google Scholar  43.Prado, D. E. Seasonally dry forests of tropical South America: from forgottenecosystems to a new phytogeographic unit. Edinb. J. Bot. 57, 437–461 (2000). Google Scholar  44.Arias, M. Estadísticas climatológicas de la Provincia de Salta. Dirección de Medio Ambiente y Recursos Naturales, Provincia de Salta, Estación Experimental Agropecuaria Salta, Inta. (1996).45.Brown, A. D. & Malizia, L. R. Las Selvas Pedemontanas de las Yungas. Ciencia hoy 14, 52–63 (2004). Google Scholar  46.Politi, N., Hunter, M. Jr. & Rivera, L. Nest selection by cavity-nesting birds in subtropical montane forests of the andes: implications for sustainable forest management. Biotropica 41, 354–360 (2009). Google Scholar  47.Politi, N., Hunter, M. & Rivera, L. Availability of cavities for avian cavity nesters in selectively logged subtropical montane forests of the Andes. For. Ecol. Manag. 260, 893–906 (2010). Google Scholar  48.Eliano, P. M., Badinier, C. & Malizia, L. R. Manejo forestal sustentable en Yungas: protocolo para el desarrollo de un plan de manejo forestal e implementación en una finca piloto. Ediciones del Subtrópico, San Miguel de Tucumán (2009).49.Ralph, C. J., Droege, S. & Sauer, J. R. Managing and monitoring birds using point counts: standards and applications 1: 3-8 (1995).50.Hill, D. Handbook of biodiversity methods: survey, evaluation and monitoring (Cambridge University Press, 2005). Google Scholar  51.Ibarra, J. T. & Martin, K. Biotic homogenization: loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015). Google Scholar  52.Schaaf, A. A. et al. Identification of tree groups used by secondary cavity-nesting birds to simplify forest management in subtropical forests. J. For. Res. 31, 1417–1424 (2020). Google Scholar  53.Blendinger, P. G. & Álvarez, M. E. Aves de la Selva Pedemontana de las Yungas australes. In: Selva Pedemontana de las Yungas. Historia Natural, Ecología y Manejo de un Ecosistema en Peligro. (Eds AD Brown, A. D et al.) 233–272 (2009).54.Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals: Ecol. Arch. Ecol. 95, 2027–2027 (2014).55.del Hoyo, J. A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive. (Lynx Edicions, 2017).56.Schaaf, A. A. et al. Influence of logging on nest density and nesting microsites of cavity-nesting birds in the subtropical forests of the Andes. For. Int. J. For. Res. https://doi.org/10.1093/forestry/cpab032 (2021).Article  Google Scholar  57.Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005). Google Scholar  58.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2016).59.Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. http://cran.r-project.org/web/packages/FD (2011).60.Ghadiri Khanaposhtani, M., Kaboli, M., Karami, M., Etemad, V. & Baniasadi, S. Effects of logged and unlogged forest patches on avifaunal diversity. Environ. Manag. 51, 750–758 (2013).61.Tilman, D. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS  Google Scholar  62.Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules: functional diversity measures. Funct. Ecol. 24, 867–876 (2010). Google Scholar  63.Mackey, B. et al. Policy options for the world’s primary forests in multilateral environmental agreements. Conserv. Lett. 8, 139–147 (2015). Google Scholar  64.Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed  Google Scholar  65.Azeria, E. T. et al. Differential response of bird functional traits to post-fire salvage logging in a boreal forest ecosystem. Acta Oecol. 37, 220–229 (2011).ADS  Google Scholar  Page 2 English name Scientific name Nesting guild Foraging guild Foraging substrate Nest-tree size (DBH, cm) Body mass (mean g) American Kestrel Falco sparverius* S I A 62.60 122.50 Black-banded Woodcreeper Dendrocolaptes picumnus S I X 57.32 82.50 Blue-crowned Trogon Trogon curucui WE FI C 59.75 51.00 Brown-crested Flycatcher Myiarchus tyrannulus S I X 35.51 29.00 Buff-browed Foliage-gleaner Syndactyla rufosuperciliata S I X 57.32 27.50 Cream-backed Woodpecker Campephilus leucopogon E I C 56.19 242.00 Dot-fronted Woodpecker Veniliornis frontalis E I U 42.34 35.00 Dusky-capped Flycatcher Myiarchus tuberculifer S I X 35.51 21.70 Golden-olive Woodpecker Piculus rubiginosus** E I C 46.78 59.50 Great Rufous Woodcreeper Xiphocolaptes major S I X 35.00 141.00 Green-cheeked Parakeet Pyrrhura molinae S G C 41.17 71.50 Narrow-billed Woodcreeper Lepidocolaptes angustirostris S I X 52.57 29.50 Olivaceous Woodcreeper Sittasomus griseicapillus S I X 57.32 14.00 Rufous Casiornis Casiornis rufus S I X 35.51 24.50 Scaly-headed Parrot Pionus maximiliani S G C 60.41 263.00 Streaked Flycatcher Myiodynastes maculatus S I C 53.88 43.50 Swainson’s Flycatcher Myiarchus swainsoni S I U 35.51 25.10 Toco Toucan Ramphastos toco S O C 68.28 680.00 Turquoise-fronted Parrot Amazona aestiva S G C 44.39 400.00 White-barred Piculet Picumnus cirratus S I U 44.95 9.15 White-eyed Parakeet Aratinga leucophthalma S G C 71.62 159.00 Yellow-collared Macaw Primolius auricollis S G C 52.54 245.00 Nesting guild: secondary-cavity nesters (S), weak cavity excavators (WE), strong primary excavator (E). Foraging guild: insectivore (I), frugivore–insectivore (FI), granivore (G), omnivore (O). Foraging substrate: air (A), bark (X), canopy (C), understory (U)29,53. ** Indicates species registered only in unlogged forest; * indicates those registered only in logged forest.
https://www.nature.com/articles/s41598-021-03756-0