Plant age at the time of ozone exposure affects flowering patterns, biotic interactions and reproduction of wild mustard

1.Agathokleous, E. et al. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Sci. Adv. 6, 17. https://doi.org/10.1126/sciadv.abc1176 (2020).CAS  Article  Google Scholar  2.Grulke, N. E. & Heath, R. L. Ozone effects on plants in natural ecosystems. Plant Biol. 22, 12–37. https://doi.org/10.1111/plb.12971 (2020).CAS  Article  PubMed  Google Scholar  3.Manisalidis, I., Stavropoulou, E., Stavropoulos, A. & Bezirtzoglou, E. Environmental and health impacts of air pollution: a review. Front. Public Health 8, 13. https://doi.org/10.3389/fpubh.2020.00014 (2020).Article  Google Scholar  4.Fitzky, A. C. et al. The interplay between ozone and urban vegetation—BVOC emissions, ozone deposition, and tree ecophysiology. Front. For Global Change https://doi.org/10.3389/ffgc.2019.00050 (2019).Article  Google Scholar  5.Young, P. J. et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 2063–2090. https://doi.org/10.5194/acp-13-2063-2013 (2013).ADS  CAS  Article  Google Scholar  6.Lin, M. Y., Horowitz, L. W., Payton, R., Fiore, A. M. & Tonnesen, G. US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmos. Chem. Phys. 17, 2943–2970. https://doi.org/10.5194/acp-17-2943-2017 (2017).ADS  CAS  Article  Google Scholar  7.Yan, Y. Y., Pozzer, A., Ojha, N., Lin, J. T. & Lelieveld, J. Analysis of European ozone trends in the period 1995–2014. Atmos. Chem. Phys. 18, 5589–5605. https://doi.org/10.5194/acp-18-5589-2018 (2018).ADS  CAS  Article  Google Scholar  8.Ziemke, J. R. et al. Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation. Atmos. Chem. Phys. 19, 3257–3269. https://doi.org/10.5194/acp-19-3257-2019 (2019).ADS  CAS  Article  Google Scholar  9.Lu, X. et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013. Environ. Sci. Technol. Lett. 7, 240–247. https://doi.org/10.1021/acs.estlett.0c00171 (2020).CAS  Article  Google Scholar  10.Sicard, P. et al. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 735, 10. https://doi.org/10.1016/j.scitotenv.2020.139542 (2020).CAS  Article  Google Scholar  11.Hayes, F., Jones, M. L. M., Mills, G. & Ashmore, M. Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone. Environ. Pollut. 146, 754–762. https://doi.org/10.1016/j.envpol.2006.06.011 (2007).CAS  Article  PubMed  Google Scholar  12.Martinez-Ghersa, M. A. et al. Legacy of historic ozone exposure on plant community and food web structure. PLoS ONE 12, 14. https://doi.org/10.1371/journal.pone.0182796 (2017).CAS  Article  Google Scholar  13.Wedlich, K. V. et al. Effects of ozone on species composition in an upland grassland. Oecologia 168, 1137–1146. https://doi.org/10.1007/s00442-011-2154-2 (2012).ADS  Article  PubMed  Google Scholar  14.Changey, F., Bagard, M., Souleymane, M. & Lerch, T. Z. Cascading effects of elevated ozone on wheat rhizosphere microbial communities depend on temperature and cultivar sensitivity. Environ. Pollut. 242, 113–125. https://doi.org/10.1016/j.envpol.2018.06.073 (2018).CAS  Article  PubMed  Google Scholar  15.Wang, P. et al. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O-3. Sci. Rep. 7, 12. https://doi.org/10.1038/s41598-017-14936-2 (2017).ADS  CAS  Article  Google Scholar  16.Couture, J. J. & Lindroth, R. L. Atmospheric change alters performance of an invasive forest insect. Glob. Change Biol. 18, 3543–3557. https://doi.org/10.1111/gcb.12014 (2012).ADS  Article  Google Scholar  17.Couture, J. J., Meehan, T. D. & Lindroth, R. L. Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. Oecologia 168, 863–876. https://doi.org/10.1007/s00442-011-2139-1 (2012).ADS  Article  PubMed  Google Scholar  18.Duque, L., Poelman, E. H. & Steffan-Dewenter, I. Plant-mediated effects of ozone on herbivores depend on exposure duration and temperature. Sci. Rep. 9, 19891. https://doi.org/10.1038/s41598-019-56234-z (2019).ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  19.Khaling, E. et al. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra. Environ. Pollut. 199, 119–129. https://doi.org/10.1016/j.envpol.2015.01.019 (2015).CAS  Article  PubMed  Google Scholar  20.Giron-Calva, P. S., Li, T. & Blande, J. D. Plant-plant interactions affect the susceptibility of plants to oviposition by pests but are disrupted by ozone pollution. Agr. Ecosyst. Environ. 233, 352–360. https://doi.org/10.1016/j.agee.2016.09.028 (2016).CAS  Article  Google Scholar  21.Giron-Calva, P. S., Li, T. & Blande, J. D. Volatile-mediated interactions between cabbage plants in the field and the impact of ozone pollution. J. Chem. Ecol. 43, 339–350. https://doi.org/10.1007/s10886-017-0836-x (2017).CAS  Article  PubMed  Google Scholar  22.Li, T., Blande, J. D. & Holopainen, J. K. Atmospheric transformation of plant volatiles disrupts host plant finding. Sci. Rep. 6, 10. https://doi.org/10.1038/srep33851 (2016).CAS  Article  Google Scholar  23.McFrederick, Q. S., Fuentes, J. D., Roulston, T., Kathilankal, J. C. & Lerdau, M. Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160, 411–420. https://doi.org/10.1007/s00442-009-1318-9 (2009).ADS  Article  PubMed  Google Scholar  24.Saunier, A. & Blande, J. D. The effect of elevated ozone on floral chemistry of Brassicaceae species. Environ. Pollut. 255, 10. https://doi.org/10.1016/j.envpol.2019.113257 (2019).CAS  Article  Google Scholar  25.Dolferus, R., Ji, X. M. & Richards, R. A. Abiotic stress and control of grain number in cereals. Plant Sci. 181, 331–341. https://doi.org/10.1016/j.plantsci.2011.05.015 (2011).CAS  Article  PubMed  Google Scholar  26.Leisner, C. P. & Ainsworth, E. A. Quantifying the effects of ozone on plant reproductive growth and development. Glob. Change Biol. 18, 606–616. https://doi.org/10.1111/j.1365-2486.2011.02535.x (2012).ADS  Article  Google Scholar  27.Zinta, G., Khan, A., AbdElgawad, H., Verma, V. & Srivastava, A. K. Unveiling the redox control of plant reproductive development during abiotic stress. Front. Plant Sci. 7, 6. https://doi.org/10.3389/fpls.2016.00700 (2016).Article  Google Scholar  28.Grass, I., Bohle, V., Tscharntke, T. & Westphal, C. How plant reproductive success is determined by the interplay of antagonists and mutualists. Ecosphere 9, 15. https://doi.org/10.1002/ecs2.2106 (2018).Article  Google Scholar  29.Singh, A. A., Agrawal, S. B., Shahi, J. P. & Agrawal, M. Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ. Sci. Pollut. Res. 21, 2628–2641. https://doi.org/10.1007/s11356-013-2188-6 (2014).CAS  Article  Google Scholar  30.Fiscus, E. L., Booker, F. L. & Burkey, K. O. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 28, 997–1011. https://doi.org/10.1111/j.1365-3040.2005.01349.x (2005).CAS  Article  Google Scholar  31.Duque, L., Poelman, E. H. & Steffan-Dewenter, I. Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success. Environ. Pollut. 272, 115953. https://doi.org/10.1016/j.envpol.2020.115953 (2021).CAS  Article  PubMed  Google Scholar  32.Hayes, F., Williamson, J. & Mills, G. Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community. Environ. Pollut. 163, 40–47. https://doi.org/10.1016/j.envpol.2011.12.032 (2012).CAS  Article  PubMed  Google Scholar  33.Rämö, K., Kanerva, T., Ojanpera, K. & Manninen, S. Growth onset, senescence, and reproductive development of meadow species in mesocosms exposed to elevated O-3 and CO2. Environ. Pollut. 145, 850–860. https://doi.org/10.1016/j.envpol.2006.03.054 (2007).CAS  Article  PubMed  Google Scholar  34.Bommarco, R., Marini, L. & Vaissiere, B. E. Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169, 1025–1032. https://doi.org/10.1007/s00442-012-2271-6 (2012).ADS  Article  PubMed  Google Scholar  35.Webber, S. M. et al. Quantifying crop pollinator-dependence and pollination deficits: the effects of experimental scale on yield and quality assessments. Agric. Ecosyst. Environ. 304, 8. https://doi.org/10.1016/j.agee.2020.107106 (2020).Article  Google Scholar  36.Farre-Armengol, G. et al. Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytol. 209, 152–160. https://doi.org/10.1111/nph.13620 (2016).CAS  Article  PubMed  Google Scholar  37.Cook, B. et al. Pollination in the anthropocene: a moth can learn ozone-altered floral blends. J. Chem. Ecol. 46, 987–996. https://doi.org/10.1007/s10886-020-01211-4 (2020).CAS  Article  PubMed  PubMed Central  Google Scholar  38.Peltonen, P. A., Vapaavuori, E., Heinonen, J., Julkunen-Tiitto, R. & Holopainen, J. K. Do elevated atmospheric CO2 and O3 affect food quality and performance of folivorous insects on silver birch?. Glob. Change Biol. 16, 918–935. https://doi.org/10.1111/j.1365-2486.2009.02073.x (2010).ADS  Article  Google Scholar  39.Lee, E. H., Tingey, D. T. & Hogsett, W. E. Evaluation of ozone exposure indexes in exposure-response modeling. Environ. Pollut. 53, 43–62. https://doi.org/10.1016/0269-7491(88)90024-3 (1988).CAS  Article  PubMed  Google Scholar  40.Lyons, T. M. & Barnes, J. D. Influence of plant age on ozone resistance in Plantago major. New Phytol. 138, 83–89. https://doi.org/10.1046/j.1469-8137.1998.00879.x (1998).CAS  Article  Google Scholar  41.Pleijel, H., Danielsson, H., Gelang, J., Sild, E. & Sellden, G. Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.). Agric. Ecosyst. Environ. 70, 61–68. https://doi.org/10.1016/s0167-8809(97)00167-9 (1998).CAS  Article  Google Scholar  42.Reiling, K. & Davison, A. W. Effects of exposure to ozone at different stages in the development of Plantago major L. on chlorophyll fluorescence and gas-exchange. New Phytol. 128, 509–514. https://doi.org/10.1111/j.1469-8137.1994.tb02998.x (1994).CAS  Article  PubMed  Google Scholar  43.Reiling, K. & Davison, A. W. Effects of a short ozone exposure given at different stages in the development of Plantago major L. New Phytol. 121, 643–647. https://doi.org/10.1111/j.1469-8137.1992.tb01135.x (1992).CAS  Article  Google Scholar  44.Mills, G. et al. in Manual for modelling and mapping critical loads & levels (2017).45.Warwick, S. I., Beckie, H. J., Thomas, A. G. & McDonald, T. The biology of Canadian weeds. 8. Sinapis arvensis L. (updated). Can. J. Plant Sci. 80, 939–961 (2000).Article  Google Scholar  46.Mulligan, G. A. & Bailey, L. G. Biology of Canadian weeds. 8. Sinapis-arvensis L. Can. J. Plant Sci. 55, 171–183 (1975).Article  Google Scholar  47.Fogg, G. E. Sinapis arvensis L. J. Ecol. 38, 415–429. https://doi.org/10.2307/2256459 (1950).Article  Google Scholar  48.Neufeld, H. S., Sullins, A., Sive, B. C. & Lefohn, A. S. Spatial and temporal patterns of ozone at Great Smoky Mountains National Park and implications for plant responses. Atmos. Environ. X 2, 100023. https://doi.org/10.1016/j.aeaoa.2019.100023 (2019).CAS  Article  Google Scholar  49.Lei, H., Wuebbles, D. J. & Liang, X. Z. Projected risk of high ozone episodes in 2050. Atmos. Environ. 59, 567–577. https://doi.org/10.1016/j.atmosenv.2012.05.051 (2012).ADS  CAS  Article  Google Scholar  50.Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B-Stat. Methodol. 65, 95–114. https://doi.org/10.1111/1467-9868.00374 (2003).MathSciNet  Article  MATH  Google Scholar  51.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).52.Brooks, M. E. et al. glmmTMB Balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R J. 9, 378–400 (2017).Article  Google Scholar  53.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.3.1. (2020).54.Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.4.7. (2020).55.Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195. https://doi.org/10.1016/j.agrformet.2014.11.010 (2015).ADS  Article  PubMed  PubMed Central  Google Scholar  56.Gong, C., Yue, X., Liao, H. & Ma, Y. M. A humidity-based exposure index representing ozone damage effects on vegetation. Environ. Res. Lett. 16, 10. https://doi.org/10.1088/1748-9326/abecbb (2021).CAS  Article  Google Scholar  57.Emberson, L. D. et al. Ozone effects on crops and consideration in crop models. Eur. J. Agron. 100, 19–34. https://doi.org/10.1016/j.eja.2018.06.002 (2018).CAS  Article  Google Scholar  58.Black, V. J., Black, C. R., Roberts, J. A. & Stewart, C. A. Impact of ozone on the reproductive development of plants. New Phytol. 147, 421–447. https://doi.org/10.1046/j.1469-8137.2000.00721.x (2000).CAS  Article  PubMed  Google Scholar  59.Takeno, K. Stress-induced flowering: the third category of flowering response. J. Exp. Bot. 67, 4925–4934. https://doi.org/10.1093/jxb/erw272 (2016).CAS  Article  PubMed  Google Scholar  60.Pashalidou, F. G., Lambert, H., Peybernes, T., Mescher, M. C. & De Moraes, C. M. Bumble bees damage plant leaves and accelerate flower production when pollen is scarce. Science 368, 881-+. https://doi.org/10.1126/science.aay0496 (2020).ADS  CAS  Article  PubMed  Google Scholar  61.Pashalidou, F. G., Lucas-Barbosa, D., van Loon, J. J. A., Dicke, M. & Fatouros, N. E. Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Ecology 94, 702–713. https://doi.org/10.1890/12-1561.1 (2013).Article  PubMed  Google Scholar  62.Stabler, D. Impacts of ozone pollution on nectar and pollen quality and their significance for pollinators PhD thesis thesis, Newcastle University, (2016).63.Cook, D. F. et al. The role of flies as pollinators of horticultural crops: an australian case study with worldwide relevance. Insects 11, 31. https://doi.org/10.3390/insects11060341 (2020).Article  Google Scholar  64.Cui, H. Y., Su, J. W., Wei, J. N., Hu, Y. J. & Ge, F. Elevated O3 enhances the attraction of whitefly-infested tomato plants to Encarsia formosa. Sci. Rep. 4, 6. https://doi.org/10.1038/srep05350 (2014).CAS  Article  Google Scholar  65.Jones, C. G. & Coleman, J. S. Plant stress and insect behavior: cottonwood, ozone and the feeding and oviposition preference of a beetle. Oecologia 76, 51–56. https://doi.org/10.1007/bf00379599 (1988).ADS  Article  PubMed  Google Scholar  66.Kopper, B. J. & Lindroth, R. L. Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agric. For. Entomol. 5, 17–26. https://doi.org/10.1046/j.1461-9563.
https://www.nature.com/articles/s41598-021-02878-9