1.Agathokleous, E. et al. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Sci. Adv. 6, 17. https://doi.org/10.1126/sciadv.abc1176 (2020).CAS Article Google Scholar 2.Grulke, N. E. & Heath, R. L. Ozone effects on plants in natural ecosystems. Plant Biol. 22, 12–37. https://doi.org/10.1111/plb.12971 (2020).CAS Article PubMed Google Scholar 3.Manisalidis, I., Stavropoulou, E., Stavropoulos, A. & Bezirtzoglou, E. Environmental and health impacts of air pollution: a review. Front. Public Health 8, 13. https://doi.org/10.3389/fpubh.2020.00014 (2020).Article Google Scholar 4.Fitzky, A. C. et al. The interplay between ozone and urban vegetation—BVOC emissions, ozone deposition, and tree ecophysiology. Front. For Global Change https://doi.org/10.3389/ffgc.2019.00050 (2019).Article Google Scholar 5.Young, P. J. et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 2063–2090. https://doi.org/10.5194/acp-13-2063-2013 (2013).ADS CAS Article Google Scholar 6.Lin, M. Y., Horowitz, L. W., Payton, R., Fiore, A. M. & Tonnesen, G. US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmos. Chem. Phys. 17, 2943–2970. https://doi.org/10.5194/acp-17-2943-2017 (2017).ADS CAS Article Google Scholar 7.Yan, Y. Y., Pozzer, A., Ojha, N., Lin, J. T. & Lelieveld, J. Analysis of European ozone trends in the period 1995–2014. Atmos. Chem. Phys. 18, 5589–5605. https://doi.org/10.5194/acp-18-5589-2018 (2018).ADS CAS Article Google Scholar 8.Ziemke, J. R. et al. Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation. Atmos. Chem. Phys. 19, 3257–3269. https://doi.org/10.5194/acp-19-3257-2019 (2019).ADS CAS Article Google Scholar 9.Lu, X. et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013. Environ. Sci. Technol. Lett. 7, 240–247. https://doi.org/10.1021/acs.estlett.0c00171 (2020).CAS Article Google Scholar 10.Sicard, P. et al. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 735, 10. https://doi.org/10.1016/j.scitotenv.2020.139542 (2020).CAS Article Google Scholar 11.Hayes, F., Jones, M. L. M., Mills, G. & Ashmore, M. Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone. Environ. Pollut. 146, 754–762. https://doi.org/10.1016/j.envpol.2006.06.011 (2007).CAS Article PubMed Google Scholar 12.Martinez-Ghersa, M. A. et al. Legacy of historic ozone exposure on plant community and food web structure. PLoS ONE 12, 14. https://doi.org/10.1371/journal.pone.0182796 (2017).CAS Article Google Scholar 13.Wedlich, K. V. et al. Effects of ozone on species composition in an upland grassland. Oecologia 168, 1137–1146. https://doi.org/10.1007/s00442-011-2154-2 (2012).ADS Article PubMed Google Scholar 14.Changey, F., Bagard, M., Souleymane, M. & Lerch, T. Z. Cascading effects of elevated ozone on wheat rhizosphere microbial communities depend on temperature and cultivar sensitivity. Environ. Pollut. 242, 113–125. https://doi.org/10.1016/j.envpol.2018.06.073 (2018).CAS Article PubMed Google Scholar 15.Wang, P. et al. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O-3. Sci. Rep. 7, 12. https://doi.org/10.1038/s41598-017-14936-2 (2017).ADS CAS Article Google Scholar 16.Couture, J. J. & Lindroth, R. L. Atmospheric change alters performance of an invasive forest insect. Glob. Change Biol. 18, 3543–3557. https://doi.org/10.1111/gcb.12014 (2012).ADS Article Google Scholar 17.Couture, J. J., Meehan, T. D. & Lindroth, R. L. Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. Oecologia 168, 863–876. https://doi.org/10.1007/s00442-011-2139-1 (2012).ADS Article PubMed Google Scholar 18.Duque, L., Poelman, E. H. & Steffan-Dewenter, I. Plant-mediated effects of ozone on herbivores depend on exposure duration and temperature. Sci. Rep. 9, 19891. https://doi.org/10.1038/s41598-019-56234-z (2019).ADS CAS Article PubMed PubMed Central Google Scholar 19.Khaling, E. et al. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra. Environ. Pollut. 199, 119–129. https://doi.org/10.1016/j.envpol.2015.01.019 (2015).CAS Article PubMed Google Scholar 20.Giron-Calva, P. S., Li, T. & Blande, J. D. Plant-plant interactions affect the susceptibility of plants to oviposition by pests but are disrupted by ozone pollution. Agr. Ecosyst. Environ. 233, 352–360. https://doi.org/10.1016/j.agee.2016.09.028 (2016).CAS Article Google Scholar 21.Giron-Calva, P. S., Li, T. & Blande, J. D. Volatile-mediated interactions between cabbage plants in the field and the impact of ozone pollution. J. Chem. Ecol. 43, 339–350. https://doi.org/10.1007/s10886-017-0836-x (2017).CAS Article PubMed Google Scholar 22.Li, T., Blande, J. D. & Holopainen, J. K. Atmospheric transformation of plant volatiles disrupts host plant finding. Sci. Rep. 6, 10. https://doi.org/10.1038/srep33851 (2016).CAS Article Google Scholar 23.McFrederick, Q. S., Fuentes, J. D., Roulston, T., Kathilankal, J. C. & Lerdau, M. Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160, 411–420. https://doi.org/10.1007/s00442-009-1318-9 (2009).ADS Article PubMed Google Scholar 24.Saunier, A. & Blande, J. D. The effect of elevated ozone on floral chemistry of Brassicaceae species. Environ. Pollut. 255, 10. https://doi.org/10.1016/j.envpol.2019.113257 (2019).CAS Article Google Scholar 25.Dolferus, R., Ji, X. M. & Richards, R. A. Abiotic stress and control of grain number in cereals. Plant Sci. 181, 331–341. https://doi.org/10.1016/j.plantsci.2011.05.015 (2011).CAS Article PubMed Google Scholar 26.Leisner, C. P. & Ainsworth, E. A. Quantifying the effects of ozone on plant reproductive growth and development. Glob. Change Biol. 18, 606–616. https://doi.org/10.1111/j.1365-2486.2011.02535.x (2012).ADS Article Google Scholar 27.Zinta, G., Khan, A., AbdElgawad, H., Verma, V. & Srivastava, A. K. Unveiling the redox control of plant reproductive development during abiotic stress. Front. Plant Sci. 7, 6. https://doi.org/10.3389/fpls.2016.00700 (2016).Article Google Scholar 28.Grass, I., Bohle, V., Tscharntke, T. & Westphal, C. How plant reproductive success is determined by the interplay of antagonists and mutualists. Ecosphere 9, 15. https://doi.org/10.1002/ecs2.2106 (2018).Article Google Scholar 29.Singh, A. A., Agrawal, S. B., Shahi, J. P. & Agrawal, M. Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ. Sci. Pollut. Res. 21, 2628–2641. https://doi.org/10.1007/s11356-013-2188-6 (2014).CAS Article Google Scholar 30.Fiscus, E. L., Booker, F. L. & Burkey, K. O. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 28, 997–1011. https://doi.org/10.1111/j.1365-3040.2005.01349.x (2005).CAS Article Google Scholar 31.Duque, L., Poelman, E. H. & Steffan-Dewenter, I. Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success. Environ. Pollut. 272, 115953. https://doi.org/10.1016/j.envpol.2020.115953 (2021).CAS Article PubMed Google Scholar 32.Hayes, F., Williamson, J. & Mills, G. Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community. Environ. Pollut. 163, 40–47. https://doi.org/10.1016/j.envpol.2011.12.032 (2012).CAS Article PubMed Google Scholar 33.Rämö, K., Kanerva, T., Ojanpera, K. & Manninen, S. Growth onset, senescence, and reproductive development of meadow species in mesocosms exposed to elevated O-3 and CO2. Environ. Pollut. 145, 850–860. https://doi.org/10.1016/j.envpol.2006.03.054 (2007).CAS Article PubMed Google Scholar 34.Bommarco, R., Marini, L. & Vaissiere, B. E. Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169, 1025–1032. https://doi.org/10.1007/s00442-012-2271-6 (2012).ADS Article PubMed Google Scholar 35.Webber, S. M. et al. Quantifying crop pollinator-dependence and pollination deficits: the effects of experimental scale on yield and quality assessments. Agric. Ecosyst. Environ. 304, 8. https://doi.org/10.1016/j.agee.2020.107106 (2020).Article Google Scholar 36.Farre-Armengol, G. et al. Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytol. 209, 152–160. https://doi.org/10.1111/nph.13620 (2016).CAS Article PubMed Google Scholar 37.Cook, B. et al. Pollination in the anthropocene: a moth can learn ozone-altered floral blends. J. Chem. Ecol. 46, 987–996. https://doi.org/10.1007/s10886-020-01211-4 (2020).CAS Article PubMed PubMed Central Google Scholar 38.Peltonen, P. A., Vapaavuori, E., Heinonen, J., Julkunen-Tiitto, R. & Holopainen, J. K. Do elevated atmospheric CO2 and O3 affect food quality and performance of folivorous insects on silver birch?. Glob. Change Biol. 16, 918–935. https://doi.org/10.1111/j.1365-2486.2009.02073.x (2010).ADS Article Google Scholar 39.Lee, E. H., Tingey, D. T. & Hogsett, W. E. Evaluation of ozone exposure indexes in exposure-response modeling. Environ. Pollut. 53, 43–62. https://doi.org/10.1016/0269-7491(88)90024-3 (1988).CAS Article PubMed Google Scholar 40.Lyons, T. M. & Barnes, J. D. Influence of plant age on ozone resistance in Plantago major. New Phytol. 138, 83–89. https://doi.org/10.1046/j.1469-8137.1998.00879.x (1998).CAS Article Google Scholar 41.Pleijel, H., Danielsson, H., Gelang, J., Sild, E. & Sellden, G. Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.). Agric. Ecosyst. Environ. 70, 61–68. https://doi.org/10.1016/s0167-8809(97)00167-9 (1998).CAS Article Google Scholar 42.Reiling, K. & Davison, A. W. Effects of exposure to ozone at different stages in the development of Plantago major L. on chlorophyll fluorescence and gas-exchange. New Phytol. 128, 509–514. https://doi.org/10.1111/j.1469-8137.1994.tb02998.x (1994).CAS Article PubMed Google Scholar 43.Reiling, K. & Davison, A. W. Effects of a short ozone exposure given at different stages in the development of Plantago major L. New Phytol. 121, 643–647. https://doi.org/10.1111/j.1469-8137.1992.tb01135.x (1992).CAS Article Google Scholar 44.Mills, G. et al. in Manual for modelling and mapping critical loads & levels (2017).45.Warwick, S. I., Beckie, H. J., Thomas, A. G. & McDonald, T. The biology of Canadian weeds. 8. Sinapis arvensis L. (updated). Can. J. Plant Sci. 80, 939–961 (2000).Article Google Scholar 46.Mulligan, G. A. & Bailey, L. G. Biology of Canadian weeds. 8. Sinapis-arvensis L. Can. J. Plant Sci. 55, 171–183 (1975).Article Google Scholar 47.Fogg, G. E. Sinapis arvensis L. J. Ecol. 38, 415–429. https://doi.org/10.2307/2256459 (1950).Article Google Scholar 48.Neufeld, H. S., Sullins, A., Sive, B. C. & Lefohn, A. S. Spatial and temporal patterns of ozone at Great Smoky Mountains National Park and implications for plant responses. Atmos. Environ. X 2, 100023. https://doi.org/10.1016/j.aeaoa.2019.100023 (2019).CAS Article Google Scholar 49.Lei, H., Wuebbles, D. J. & Liang, X. Z. Projected risk of high ozone episodes in 2050. Atmos. Environ. 59, 567–577. https://doi.org/10.1016/j.atmosenv.2012.05.051 (2012).ADS CAS Article Google Scholar 50.Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B-Stat. Methodol. 65, 95–114. https://doi.org/10.1111/1467-9868.00374 (2003).MathSciNet Article MATH Google Scholar 51.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).52.Brooks, M. E. et al. glmmTMB Balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R J. 9, 378–400 (2017).Article Google Scholar 53.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.3.1. (2020).54.Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.4.7. (2020).55.Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195. https://doi.org/10.1016/j.agrformet.2014.11.010 (2015).ADS Article PubMed PubMed Central Google Scholar 56.Gong, C., Yue, X., Liao, H. & Ma, Y. M. A humidity-based exposure index representing ozone damage effects on vegetation. Environ. Res. Lett. 16, 10. https://doi.org/10.1088/1748-9326/abecbb (2021).CAS Article Google Scholar 57.Emberson, L. D. et al. Ozone effects on crops and consideration in crop models. Eur. J. Agron. 100, 19–34. https://doi.org/10.1016/j.eja.2018.06.002 (2018).CAS Article Google Scholar 58.Black, V. J., Black, C. R., Roberts, J. A. & Stewart, C. A. Impact of ozone on the reproductive development of plants. New Phytol. 147, 421–447. https://doi.org/10.1046/j.1469-8137.2000.00721.x (2000).CAS Article PubMed Google Scholar 59.Takeno, K. Stress-induced flowering: the third category of flowering response. J. Exp. Bot. 67, 4925–4934. https://doi.org/10.1093/jxb/erw272 (2016).CAS Article PubMed Google Scholar 60.Pashalidou, F. G., Lambert, H., Peybernes, T., Mescher, M. C. & De Moraes, C. M. Bumble bees damage plant leaves and accelerate flower production when pollen is scarce. Science 368, 881-+. https://doi.org/10.1126/science.aay0496 (2020).ADS CAS Article PubMed Google Scholar 61.Pashalidou, F. G., Lucas-Barbosa, D., van Loon, J. J. A., Dicke, M. & Fatouros, N. E. Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Ecology 94, 702–713. https://doi.org/10.1890/12-1561.1 (2013).Article PubMed Google Scholar 62.Stabler, D. Impacts of ozone pollution on nectar and pollen quality and their significance for pollinators PhD thesis thesis, Newcastle University, (2016).63.Cook, D. F. et al. The role of flies as pollinators of horticultural crops: an australian case study with worldwide relevance. Insects 11, 31. https://doi.org/10.3390/insects11060341 (2020).Article Google Scholar 64.Cui, H. Y., Su, J. W., Wei, J. N., Hu, Y. J. & Ge, F. Elevated O3 enhances the attraction of whitefly-infested tomato plants to Encarsia formosa. Sci. Rep. 4, 6. https://doi.org/10.1038/srep05350 (2014).CAS Article Google Scholar 65.Jones, C. G. & Coleman, J. S. Plant stress and insect behavior: cottonwood, ozone and the feeding and oviposition preference of a beetle. Oecologia 76, 51–56. https://doi.org/10.1007/bf00379599 (1988).ADS Article PubMed Google Scholar 66.Kopper, B. J. & Lindroth, R. L. Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agric. For. Entomol. 5, 17–26. https://doi.org/10.1046/j.1461-9563.
https://www.nature.com/articles/s41598-021-02878-9
Plant age at the time of ozone exposure affects flowering patterns, biotic interactions and reproduction of wild mustard
