1.Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 289, 284–288 (2000).ADS PubMed Article PubMed Central Google Scholar 2.Christian, J., Martin, J., Kyle McKay, S., Chappell, J. & Pringle, C. M. Building a hydrologic foundation for tropical watershed management. PLoS One 14, e0213306 (2019).CAS PubMed PubMed Central Article Google Scholar 3.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS CAS Article Google Scholar 4.Hall, J. S. et al. (eds) Managing Watersheds for Ecosystem Services in the Steepland Neotropics (Inter-American Development Bank, 2015). Google Scholar 5.Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 17058 (2017).CAS PubMed Article PubMed Central Google Scholar 6.Hayden, C. J. & Beman, J. M. Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA. Environ. Microbiol. 18, 1782–1791 (2016).PubMed Article PubMed Central Google Scholar 7.Shabarova, T. et al. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat. Microbiol. 6, 479–488 (2021).CAS PubMed Article PubMed Central Google Scholar 8.Cavaco, M. A. et al. Freshwater microbial community diversity in a rapidly changing High Arctic watershed. FEMS Microbiol. Ecol. 95, fiz161 (2019).CAS PubMed Article PubMed Central Google Scholar 9.Hilderbrand, R. H. et al. Microbial communities can predict the ecological condition of headwater streams. PLoS One 15, e0236932 (2020).CAS PubMed PubMed Central Article Google Scholar 10.Bramley, R. G. V. & Roth, C. H. Land-use effects on water quality in an intensively managed catchment in the Australian humid tropics. Mar. Freshw. Res. 53, 931–940 (2002).CAS Article Google Scholar 11.Butler, J. R. A. et al. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia. Agric. Ecosyst. Environ. 180, 176–191 (2013).Article Google Scholar 12.Martin, G. et al. Stream sediment bacterial communities exhibit temporally-consistent and distinct thresholds to land use change in a mixed-use watershed. FEMS Microbiol. Ecol. 97, fiaa256 (2021).CAS PubMed Article PubMed Central Google Scholar 13.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).ADS CAS PubMed Article Google Scholar 14.Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).ADS PubMed PubMed Central Article CAS Google Scholar 15.Hall, J. S., Plisinski, J. S., Mladinich, S. K., van Breugel, M., Lai, H. R., Asner, G. P. & Thompson, J. R. Deforestation scenarios show the importance of secondary forest for meeting Panama’s carbon goals. Landsc. Ecol. (2021) (in review).16.Rozendaal, D. M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, 23 (2019).Article Google Scholar 17.Hassler, S. K., Zimmermann, B., van Breugel, M., Hall, J. S. & Elsenbeer, H. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. For. Ecol. Manag. 261, 1634–1642 (2011).Article Google Scholar 18.Birch, A. L., Stallard, R. F. & Barnard, H. R. Precipitation characteristics and land cover control wet season runoff source and rainfall partitioning in three humid tropical catchments in Central Panama. Water Resour. Res. 57, e2020WR028058 (2021).ADS Article Google Scholar 19.Birch, A. L., Stallard, R. F., Bush, S. A. & Barnard, H. R. The influence of land cover and storm magnitude on hydrologic flowpath activation and runoff generation in steep tropical catchments of central Panama. J. Hydrol. 596, 126138 (2021).Article Google Scholar 20.FAO. The Future of Food and Agriculture: Trends and Challenges (FAO, 2011). Google Scholar 21.Knoke, T. et al. Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nat. Commun. 7, 1–12 (2016).Article CAS Google Scholar 22.Jose, S. & Dollinger, J. Silvopasture: A sustainable livestock production system. Agrofor. Syst. 93, 1–9 (2019).Article Google Scholar 23.Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 76, 1–10 (2009).Article Google Scholar 24.Dibala, R. H. Forage Production and Diversification for Climate-Smart Tropical and Temperate Silvopastures (University of Missouri, 2019). Google Scholar 25.Hilary, B. et al. Riparian buffer length is more influential than width on river water quality: A case study in southern Costa Rica. J. Environ. Manag. 286, 112132 (2021).CAS Article Google Scholar 26.Stallard, R. F., Ogden, F. L., Elsenbeer, H. & Hall, J. S. Panama canal watershed experiment—Agua Salud Project. Water Resour. Impact 12, 17–19 (2010). Google Scholar 27.van Breugel, M. et al. Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape. PLoS One 8, e82433 (2013).ADS PubMed PubMed Central Article CAS Google Scholar 28.Ogden, F. L., Crouch, T. D., Stallard, R. F. & Hall, J. S. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resour. Res. 49, 8443–8462 (2013).Article Google Scholar 29.Paton, S. Agua Salud, Precipitation Records at Celestino Tower (Panama Canal Watershed. Smithsonian Tropical Research Institute, 2019). https://doi.org/10.25573/data.10042565.v9.30.van Breugel, M. et al. Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. J. Ecol. 107, 566–581 (2019).Article Google Scholar 31.Derlet, R. W., Carlson, J. R. & Noponen, M. N. Coliform and pathologic bacteria in Sierra Nevada national forest wilderness area lakes and streams. Wilderness Environ. Med. 15, 245–249 (2004).PubMed Article PubMed Central Google Scholar 32.Nakai, R. et al. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. Nov., Oligoflexales ord. nov. and Oligoflexia classis nov.. Int. J. Syst. Evol. Microbiol. 64, 3353–3359 (2014).PubMed PubMed Central Article CAS Google Scholar 33.Poindexter, J. S. Asticcacaulis. in Bergey’s Manual of Systematics of Archaea and Bacteria 1–14 (Wiley, 2015). https://doi.org/10.1002/9781118960608.gbm00790.34.Biebl, H. & Pfennig, N. Isolation of members of the family Rhodospirillaceae. in The Prokaryotes 267–273 (Springer, 1981).35.Chizmar, S. et al. A Discounted cash flow and capital budgeting analysis of silvopastoral systems in the Amazonas region of Peru. Land 9, 353 (2020).Article Google Scholar 36.González, J. M. Costos y beneficios de un sistema silvopastoril intensivo (sspi), con base en Leucaena leucocephala (Estudio de caso en el municipio de Tepalcatepec, Michoacán, México). Av. en Investig. Agropecu. 17, 35–50 (2013). Google Scholar 37.Murgueitio, E., Calle, Z., Uribe, F., Calle, A. & Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 261, 1654–1663 (2011).Article Google Scholar 38.Harvey, C. A. et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv. Biol. 22, 8–15 (2008).PubMed Article PubMed Central Google Scholar 39.Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).ADS CAS PubMed Article PubMed Central Google Scholar 40.Epihov, D. Z. et al. Legume-microbiome interactions unlock mineral nutrients in regrowing tropical forests. Proc. Natl. Acad. Sci. U.S.A. 118, 2022241118 (2021).Article CAS Google Scholar 41.Mayer, P. M., Reynolds, S. K., McCutchen, M. D. & Canfield, T. J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 36, 1172–1180 (2007).CAS PubMed Article PubMed Central Google Scholar 42.Nair, V. D., Nair, P. K. R., Kalmbacher, R. S. & Ezenwa, I. V. Reducing nutrient loss from farms through silvopastoral practices in coarse-textured soils of Florida, USA. Ecol. Eng. 29, 192–199 (2007).Article Google Scholar 43.Atangana, A. et al. Agroforestry and biodiversity conservation in tropical landscapes. In Tropical Agroforestry 227–232 (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-007-7723-1_11.44.Harvey, C. A. & González Villalobos, J. A. Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodivers. Conserv. 16, 2257–2292 (2007).Article Google Scholar 45.Harvey, C. A., Gonzalez, J. & Somarriba, E. Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodivers. Conserv. 15, 555–585 (2006).Article Google Scholar 46.Ewel, J. J. Natural systems as models for the design of sustainable systems of land use. Agrofor. Syst. 45, 1–21 (1999).Article Google Scholar 47.Kopprio, G. A. et al. Vibrio and bacterial communities across a pollution gradient in the Bay of Bengal: Unraveling their biogeochemical drivers. Front. Microbiol. 11, 594 (2020).PubMed PubMed Central Article Google Scholar 48.Lau, H. T., Faryna, J. & Triplett, E. W. Aquitalea magnusonii gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a humic lake. Int. J. Syst. Evol. Microbiol. 56, 867–871 (2006).CAS PubMed Article PubMed Central Google Scholar 49.Zwirglmaier, K., Keiz, K., Engel, M., Geist, J. & Raeder, U. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6, 1168 (2015).PubMed PubMed Central Article Google Scholar 50.Belsky, A. J., Matzke, A. & Uselman, S. Survey of livestock influences on stream and riparian ecosystems in the western United States. J. Soil Water Conserv. 54, 419–431 (1999). Google Scholar 51.Webber, D. F. et al. Livestock grazing and vegetative filter strip buffer effects on runoff sediment, nitrate, and phosphorus losses. J. Soil Water Conserv. 65, 34–41 (2010).Article Google Scholar 52.Stallard, R. F., García, T. & Mitre, M. La cuenca del canal: Deforestación, contaminación y urbanizacióne. In La cuenca del canal: Deforestación, contaminación y urbanización (eds Heckadon-Moreno, S. et al.) 57–83 (Hidrologia y Suelos, 1999). Google Scholar 53.Liao, H. et al. Storm loads of culturable and molecular fecal indicators in an inland urban stream. Sci. Total Environ. 530–531, 347–356 (2015).ADS PubMed Article CAS PubMed Central Google Scholar 54.Badgley, B. D. et al. Fecal indicator dynamics at the watershed scale: Variable relationships with land use, season, and water chemistry. Sci. Total Environ. 697, 134113 (2019).ADS CAS PubMed Article PubMed Central Google Scholar 55.De, R., Mukhopadhyay, A. K. & Dutta, S. Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter. Gut Pathog. 12, 32 (2020).CAS PubMed PubMed Central Article Google Scholar 56.Hagey, J. V. et al. Fecal microbial communities in a large representative cohort of California dairy cows. Front. Microbiol. 10, 1093 (2019).PubMed PubMed Central Article Google Scholar 57.Poulain, A. J. & Newman, D. K. Rhodobacter capsulatus catalyzes light-dependent Fe(II) oxidation under anaerobic conditions as a potential detoxification mechanism. Appl. Environ. Microbiol. 75, 6639–6646 (2009).ADS CAS PubMed PubMed Central Article Google Scholar 58.Collins, R. et al. Best management practices to mitigate faecal contamination by livestock of New Zealand waters. N. Z. J. Agric. Res. 50, 267–278 (2010).Article Google Scholar 59.Bragina, L., Sherlock, O., van Rossum, A. J. & Jennings, E. Cattle exclusion using fencing reduces Escherichia coli (E. coli) level in stream sediment reservoirs in northeast Ireland. Agric. Ecosyst. Environ. 239, 349–358 (2017).Article Google Scholar 60.Murphy, S. F. & Stallard, R. F. Appendix 2—Methods used to analyze water quality of four watersheds in eastern Puerto Rico | CU Experts | CU Boulder (2012).61.USGS Fact Sheet 2010-3121: Water-Quality Sampling by the U.S. Geological Survey: Standard Protocols and Procedures. https://pubs.usgs.gov/fs/2010/3121/.62.Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).PubMed Article PubMed Central Google Scholar 63.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).ADS CAS PubMed Article PubMed Central Google Scholar 64.Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).PubMed PubMed Central Article CAS Google Scholar 65.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS PubMed PubMed Central Article Google Scholar 66.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).Article Google Scholar 67.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS PubMed PubMed Central Article Google Scholar 68.Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).CAS PubMed PubMed Central Article Google Scholar 69.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS CAS PubMed PubMed Central Article Google Scholar 70.Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS PubMed Article PubMed Central Google Scholar 71.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).ADS CAS PubMed PubMed Central Article Google Scholar 72.Csárdi, G. & Nepusz, T. The igraph software package for complex network research (2006).73.De Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed Article PubMed Central Google Scholar 74.Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). in Wiley StatsRef: Statistics Reference Online 1–15 (Wiley, 2017).75.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article Google Scholar 76.Mandal, S. et al. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).PubMed PubMed Central Google Scholar 77.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed PubMed Central Article Google Scholar Page 2 Scientific Reports (Sci Rep) ISSN 2045-2322 (online)
https://www.nature.com/articles/s41598-021-01193-7
Land use influences stream bacterial communities in lowland tropical watersheds
