Land use influences stream bacterial communities in lowland tropical watersheds

1.Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 289, 284–288 (2000).ADS  PubMed  Article  PubMed Central  Google Scholar  2.Christian, J., Martin, J., Kyle McKay, S., Chappell, J. & Pringle, C. M. Building a hydrologic foundation for tropical watershed management. PLoS One 14, e0213306 (2019).CAS  PubMed  PubMed Central  Article  Google Scholar  3.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS  CAS  Article  Google Scholar  4.Hall, J. S. et al. (eds) Managing Watersheds for Ecosystem Services in the Steepland Neotropics (Inter-American Development Bank, 2015). Google Scholar  5.Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 17058 (2017).CAS  PubMed  Article  PubMed Central  Google Scholar  6.Hayden, C. J. & Beman, J. M. Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA. Environ. Microbiol. 18, 1782–1791 (2016).PubMed  Article  PubMed Central  Google Scholar  7.Shabarova, T. et al. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat. Microbiol. 6, 479–488 (2021).CAS  PubMed  Article  PubMed Central  Google Scholar  8.Cavaco, M. A. et al. Freshwater microbial community diversity in a rapidly changing High Arctic watershed. FEMS Microbiol. Ecol. 95, fiz161 (2019).CAS  PubMed  Article  PubMed Central  Google Scholar  9.Hilderbrand, R. H. et al. Microbial communities can predict the ecological condition of headwater streams. PLoS One 15, e0236932 (2020).CAS  PubMed  PubMed Central  Article  Google Scholar  10.Bramley, R. G. V. & Roth, C. H. Land-use effects on water quality in an intensively managed catchment in the Australian humid tropics. Mar. Freshw. Res. 53, 931–940 (2002).CAS  Article  Google Scholar  11.Butler, J. R. A. et al. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia. Agric. Ecosyst. Environ. 180, 176–191 (2013).Article  Google Scholar  12.Martin, G. et al. Stream sediment bacterial communities exhibit temporally-consistent and distinct thresholds to land use change in a mixed-use watershed. FEMS Microbiol. Ecol. 97, fiaa256 (2021).CAS  PubMed  Article  PubMed Central  Google Scholar  13.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).ADS  CAS  PubMed  Article  Google Scholar  14.Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).ADS  PubMed  PubMed Central  Article  CAS  Google Scholar  15.Hall, J. S., Plisinski, J. S., Mladinich, S. K., van Breugel, M., Lai, H. R., Asner, G. P. & Thompson, J. R. Deforestation scenarios show the importance of secondary forest for meeting Panama’s carbon goals. Landsc. Ecol. (2021) (in review).16.Rozendaal, D. M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, 23 (2019).Article  Google Scholar  17.Hassler, S. K., Zimmermann, B., van Breugel, M., Hall, J. S. & Elsenbeer, H. Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. For. Ecol. Manag. 261, 1634–1642 (2011).Article  Google Scholar  18.Birch, A. L., Stallard, R. F. & Barnard, H. R. Precipitation characteristics and land cover control wet season runoff source and rainfall partitioning in three humid tropical catchments in Central Panama. Water Resour. Res. 57, e2020WR028058 (2021).ADS  Article  Google Scholar  19.Birch, A. L., Stallard, R. F., Bush, S. A. & Barnard, H. R. The influence of land cover and storm magnitude on hydrologic flowpath activation and runoff generation in steep tropical catchments of central Panama. J. Hydrol. 596, 126138 (2021).Article  Google Scholar  20.FAO. The Future of Food and Agriculture: Trends and Challenges (FAO, 2011). Google Scholar  21.Knoke, T. et al. Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nat. Commun. 7, 1–12 (2016).Article  CAS  Google Scholar  22.Jose, S. & Dollinger, J. Silvopasture: A sustainable livestock production system. Agrofor. Syst. 93, 1–9 (2019).Article  Google Scholar  23.Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 76, 1–10 (2009).Article  Google Scholar  24.Dibala, R. H. Forage Production and Diversification for Climate-Smart Tropical and Temperate Silvopastures (University of Missouri, 2019). Google Scholar  25.Hilary, B. et al. Riparian buffer length is more influential than width on river water quality: A case study in southern Costa Rica. J. Environ. Manag. 286, 112132 (2021).CAS  Article  Google Scholar  26.Stallard, R. F., Ogden, F. L., Elsenbeer, H. & Hall, J. S. Panama canal watershed experiment—Agua Salud Project. Water Resour. Impact 12, 17–19 (2010). Google Scholar  27.van Breugel, M. et al. Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape. PLoS One 8, e82433 (2013).ADS  PubMed  PubMed Central  Article  CAS  Google Scholar  28.Ogden, F. L., Crouch, T. D., Stallard, R. F. & Hall, J. S. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resour. Res. 49, 8443–8462 (2013).Article  Google Scholar  29.Paton, S. Agua Salud, Precipitation Records at Celestino Tower (Panama Canal Watershed. Smithsonian Tropical Research Institute, 2019). https://doi.org/10.25573/data.10042565.v9.30.van Breugel, M. et al. Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. J. Ecol. 107, 566–581 (2019).Article  Google Scholar  31.Derlet, R. W., Carlson, J. R. & Noponen, M. N. Coliform and pathologic bacteria in Sierra Nevada national forest wilderness area lakes and streams. Wilderness Environ. Med. 15, 245–249 (2004).PubMed  Article  PubMed Central  Google Scholar  32.Nakai, R. et al. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. Nov., Oligoflexales ord. nov. and Oligoflexia classis nov.. Int. J. Syst. Evol. Microbiol. 64, 3353–3359 (2014).PubMed  PubMed Central  Article  CAS  Google Scholar  33.Poindexter, J. S. Asticcacaulis. in Bergey’s Manual of Systematics of Archaea and Bacteria 1–14 (Wiley, 2015). https://doi.org/10.1002/9781118960608.gbm00790.34.Biebl, H. & Pfennig, N. Isolation of members of the family Rhodospirillaceae. in The Prokaryotes 267–273 (Springer, 1981).35.Chizmar, S. et al. A Discounted cash flow and capital budgeting analysis of silvopastoral systems in the Amazonas region of Peru. Land 9, 353 (2020).Article  Google Scholar  36.González, J. M. Costos y beneficios de un sistema silvopastoril intensivo (sspi), con base en Leucaena leucocephala (Estudio de caso en el municipio de Tepalcatepec, Michoacán, México). Av. en Investig. Agropecu. 17, 35–50 (2013). Google Scholar  37.Murgueitio, E., Calle, Z., Uribe, F., Calle, A. & Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 261, 1654–1663 (2011).Article  Google Scholar  38.Harvey, C. A. et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv. Biol. 22, 8–15 (2008).PubMed  Article  PubMed Central  Google Scholar  39.Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  40.Epihov, D. Z. et al. Legume-microbiome interactions unlock mineral nutrients in regrowing tropical forests. Proc. Natl. Acad. Sci. U.S.A. 118, 2022241118 (2021).Article  CAS  Google Scholar  41.Mayer, P. M., Reynolds, S. K., McCutchen, M. D. & Canfield, T. J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 36, 1172–1180 (2007).CAS  PubMed  Article  PubMed Central  Google Scholar  42.Nair, V. D., Nair, P. K. R., Kalmbacher, R. S. & Ezenwa, I. V. Reducing nutrient loss from farms through silvopastoral practices in coarse-textured soils of Florida, USA. Ecol. Eng. 29, 192–199 (2007).Article  Google Scholar  43.Atangana, A. et al. Agroforestry and biodiversity conservation in tropical landscapes. In Tropical Agroforestry 227–232 (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-007-7723-1_11.44.Harvey, C. A. & González Villalobos, J. A. Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodivers. Conserv. 16, 2257–2292 (2007).Article  Google Scholar  45.Harvey, C. A., Gonzalez, J. & Somarriba, E. Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodivers. Conserv. 15, 555–585 (2006).Article  Google Scholar  46.Ewel, J. J. Natural systems as models for the design of sustainable systems of land use. Agrofor. Syst. 45, 1–21 (1999).Article  Google Scholar  47.Kopprio, G. A. et al. Vibrio and bacterial communities across a pollution gradient in the Bay of Bengal: Unraveling their biogeochemical drivers. Front. Microbiol. 11, 594 (2020).PubMed  PubMed Central  Article  Google Scholar  48.Lau, H. T., Faryna, J. & Triplett, E. W. Aquitalea magnusonii gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a humic lake. Int. J. Syst. Evol. Microbiol. 56, 867–871 (2006).CAS  PubMed  Article  PubMed Central  Google Scholar  49.Zwirglmaier, K., Keiz, K., Engel, M., Geist, J. & Raeder, U. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria. Front. Microbiol. 6, 1168 (2015).PubMed  PubMed Central  Article  Google Scholar  50.Belsky, A. J., Matzke, A. & Uselman, S. Survey of livestock influences on stream and riparian ecosystems in the western United States. J. Soil Water Conserv. 54, 419–431 (1999). Google Scholar  51.Webber, D. F. et al. Livestock grazing and vegetative filter strip buffer effects on runoff sediment, nitrate, and phosphorus losses. J. Soil Water Conserv. 65, 34–41 (2010).Article  Google Scholar  52.Stallard, R. F., García, T. & Mitre, M. La cuenca del canal: Deforestación, contaminación y urbanizacióne. In La cuenca del canal: Deforestación, contaminación y urbanización (eds Heckadon-Moreno, S. et al.) 57–83 (Hidrologia y Suelos, 1999). Google Scholar  53.Liao, H. et al. Storm loads of culturable and molecular fecal indicators in an inland urban stream. Sci. Total Environ. 530–531, 347–356 (2015).ADS  PubMed  Article  CAS  PubMed Central  Google Scholar  54.Badgley, B. D. et al. Fecal indicator dynamics at the watershed scale: Variable relationships with land use, season, and water chemistry. Sci. Total Environ. 697, 134113 (2019).ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  55.De, R., Mukhopadhyay, A. K. & Dutta, S. Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter. Gut Pathog. 12, 32 (2020).CAS  PubMed  PubMed Central  Article  Google Scholar  56.Hagey, J. V. et al. Fecal microbial communities in a large representative cohort of California dairy cows. Front. Microbiol. 10, 1093 (2019).PubMed  PubMed Central  Article  Google Scholar  57.Poulain, A. J. & Newman, D. K. Rhodobacter capsulatus catalyzes light-dependent Fe(II) oxidation under anaerobic conditions as a potential detoxification mechanism. Appl. Environ. Microbiol. 75, 6639–6646 (2009).ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  58.Collins, R. et al. Best management practices to mitigate faecal contamination by livestock of New Zealand waters. N. Z. J. Agric. Res. 50, 267–278 (2010).Article  Google Scholar  59.Bragina, L., Sherlock, O., van Rossum, A. J. & Jennings, E. Cattle exclusion using fencing reduces Escherichia coli (E. coli) level in stream sediment reservoirs in northeast Ireland. Agric. Ecosyst. Environ. 239, 349–358 (2017).Article  Google Scholar  60.Murphy, S. F. & Stallard, R. F. Appendix 2—Methods used to analyze water quality of four watersheds in eastern Puerto Rico | CU Experts | CU Boulder (2012).61.USGS Fact Sheet 2010-3121: Water-Quality Sampling by the U.S. Geological Survey: Standard Protocols and Procedures. https://pubs.usgs.gov/fs/2010/3121/.62.Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).PubMed  Article  PubMed Central  Google Scholar  63.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  64.Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).PubMed  PubMed Central  Article  CAS  Google Scholar  65.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS  PubMed  PubMed Central  Article  Google Scholar  66.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).Article  Google Scholar  67.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS  PubMed  PubMed Central  Article  Google Scholar  68.Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).CAS  PubMed  PubMed Central  Article  Google Scholar  69.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  70.Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS  PubMed  Article  PubMed Central  Google Scholar  71.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  72.Csárdi, G. & Nepusz, T. The igraph software package for complex network research (2006).73.De Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed  Article  PubMed Central  Google Scholar  74.Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). in Wiley StatsRef: Statistics Reference Online 1–15 (Wiley, 2017).75.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article  Google Scholar  76.Mandal, S. et al. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).PubMed  PubMed Central  Google Scholar  77.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed  PubMed Central  Article  Google Scholar  Page 2 Scientific Reports (Sci Rep) ISSN 2045-2322 (online)
https://www.nature.com/articles/s41598-021-01193-7