Demand-side solutions to climate change mitigation consistent with high levels of well-being

1.Mundaca, L., Ürge-Vorsatz, D. & Wilson, C. Demand-side approaches for limiting global warming to 1.5 °C. Energy Effic. 12, 343–362 (2019). Google Scholar  2.Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014). Google Scholar  3.Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 8, 268–271 (2018). Google Scholar  4.IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).5.Creutzig, F. et al. Beyond technology: demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 41, 173–198 (2016). Google Scholar  6.Deeming, C. Addressing the social determinants of subjective wellbeing: the latest challenge for social policy. J. Soc. Policy 42, 541–565 (2013). Google Scholar  7.Stiglitz, J., Sen, A. & Fitoussi, J.-P. The Measurement of Economic Performance and Social Progress Revisited: Reflections and Overview (OFCE, 2009); https://www.researchgate.net/publication/278828759_The_Measurement_of_Economic_Performance_and_Social_Progress_Revisited_Reflections_and_Overview8.Durand, M. The OECD better life initiative: how’s life? and the measurement of well-being. Rev. Income Wealth 61, 4–17 (2015). Google Scholar  9.Fleurbaey, M. & Blanchet, D. Beyond GDP: Measuring Welfare and Assessing Sustainability (Oxford Univ. Press, 2013).10.Roger, C. Well-being in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (The Metaphysics Research Lab, 2008); http://plato.stanford.edu/archives/win2008/entries/well-being11.Mrkajic, V., Vukelic, D. & Mihajlov, A. Reduction of CO2 emission and non-environmental co-benefits of bicycle infrastructure provision: the case of the University of Novi Sad, Serbia. Renew. Sustain. Energy Rev. 49, 232–242 (2015).CAS  Google Scholar  12.Lamb, W. F. & Steinberger, J. K. Human well-being and climate change mitigation. Wiley Interdiscip. Rev. Clim. Change 8, e485 (2017). Google Scholar  13.Mattauch, L., Ridgway, M. & Creutzig, F. Happy or liberal? Making sense of behavior in transport policy design. Transp. Res. D Transp. Environ. 45, 64–83 (2015).14.Sen, A. in The Quality of Life (eds Nussbaum, M. & Sen, A.) Ch. 5 (Clarendon Press, 1993); https://scholar.harvard.edu/sen/publications/capability-and-well-being-015.Max-Neef, M., Elizalde, A. & Hopenhayn, M. in Real-Life Economics: Understanding Wealth Creation (eds Ekins, P. & Max-Neef, M.) 197–213 (Routledge, 1992).16.Dalkmann, H. & Brannigan, C. Transport and Climate Change. Sustainable Transport: A Sourcebook for Policy-makers in Developing Cities (GTZ, 2007); https://lib.icimod.org/record/1315517.Bongardt, D. et al. Low-Carbon Land Transport: Policy Handbook (Routledge, 2013).18.van den Berg, N. J. et al. Improved modelling of lifestyle changes in integrated assessment models: cross-disciplinary insights from methodologies and theories. Energy Strategy Rev. 26, 100420 (2019). Google Scholar  19.Roy, J., Some, S., Das, N. & Pathak, M. Demand side climate change mitigation actions and SDGs: literature review with systematic evidence search. Environ. Res. Lett. 16, 043003 (2021).CAS  Google Scholar  20.Food Wastage Footprint: Full-Cost Accounting (FAO, 2014).21.Schanes, K., Dobernig, K. & Gözet, B. Food waste matters–a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018). Google Scholar  22.Gunders, D. & Bloom, J. Wasted: How America is Losing up to 40 Percent of its Food from Farm to Fork to Landfill (NRDC, 2017); https://www.nrdc.org/resources/wasted-how-america-losing-40-percent-its-food-farm-fork-landfill23.Wilson, N. L., Rickard, B. J., Saputo, R. & Ho, S.-T. Food waste: the role of date labels, package size, and product category. Food Qual. Prefer. 55, 35–44 (2017). Google Scholar  24.Shukla, P. R. et al. (eds) Special Report on Climate Change and Land (IPCC, 2019).25.Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 811–922 (IPCC, Cambridge Univ. Press, 2014).26.Creutzig, F. Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36, 341–360 (2015). Google Scholar  27.McCollum, D. L. et al. Improving the behavioral realism of global integrated assessment models: an application to consumers’ vehicle choices. Transp. Res. D Transp. Environ. 55, 322–342 (2017). Google Scholar  28.Geels, F. W., Sovacool, B. K., Schwanen, T. & Sorrell, S. The socio-technical dynamics of low-carbon transitions. Joule 1, 463–479 (2017). Google Scholar  29.Larkin, A., Hoolohan, C. & McLachlan, C. Embracing context and complexity to address environmental challenges in the water-energy-food nexus. Futures 123, 102612 (2020). Google Scholar  30.Gota, S., Huizenga, C., Peet, K., Medimorec, N. & Bakker, S. Decarbonising transport to achieve Paris Agreement targets. Energy Effic. 12, 363–386 (2019). Google Scholar  31.Shabanpour, R., Golshani, N., Tayarani, M., Auld, J. & Mohammadian, A. Analysis of telecommuting behavior and impacts on travel demand and the environment. Transp. Res. D Transp. Environ. 62, 563–576 (2018). Google Scholar  32.Riggs, W. Telework and sustainable travel during the COVID-19 era. Preprint at SSRN https://doi.org/10.2139/ssrn.3638885 (2020).33.Policy Pathways: A Tale of Renewed Cities (International Energy Agency, 2013).34.Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911–912 (2015).CAS  Google Scholar  35.Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P. & Seto, K. C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl Acad. Sci. USA 112, 6283–6288 (2015).CAS  Google Scholar  36.Khalili, S., Rantanen, E., Bogdanov, D. & Breyer, C. Global transportation demand development with impacts on the energy demand and greenhouse gas emissions in a climate-constrained world. Energies 12, 3870 (2019).CAS  Google Scholar  37.IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).38.Hertwich, E. G. et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environ. Res. Lett. 14, 043004 (2019).CAS  Google Scholar  39.Pauliuk, S. et al. Global scenarios of resource and emissions savings from systemic material efficiency in buildings and cars. Nat. Commun. 12, 5097 (2021).40.Belussi, L. et al. A review of performance of zero energy buildings and energy efficiency solutions. J. Build. Eng. 25, 100772 (2019). Google Scholar  41.Bodart, M. & De Herde, A. Global energy savings in offices buildings by the use of daylighting. Energy Build. 34, 421–429 (2002). Google Scholar  42.Ürge-Vorsatz, D. et al. Advances toward a net-zero global building sector. Annu. Rev. Environ. Resour. 45, 227–269 (2020). Google Scholar  43.Roy, J., Dowd, A., Muller, A., Pal, S. & Prata, N. in Global Energy Assessment—Toward a Sustainable Future (eds Global Energy Assessment Writing Team) 1527–1548 (Cambridge Univ. Press/The International Institute for Applied Systems Analysis, 2012).44.Dixit, M. K. 3-D printing in building construction: a literature review of opportunities and challenges of reducing life cycle energy and carbon of buildings. IOP Conf. Ser. Earth Environ. Sci. 290, 012012 (2019). Google Scholar  45.Nadel, S. & Ungar, L. Halfway There: Energy Efficiency Can Cut Energy Use and Greenhouse Gas Emissions in Half by 2050 (ACEEE, 2019); https://www.aceee.org/research-report/u190746.Nisa, C. F., Bélanger, J. J., Schumpe, B. M. & Faller, D. G. Meta-analysis of randomised controlled trials testing behavioural interventions to promote household action on climate change. Nat. Commun. 10, 4545 (2019).CAS  Google Scholar  47.Wang, H., Chen, W. & Shi, J. Low carbon transition of global building sector under 2- and 1.5-degree targets. Appl. Energy 222, 148–157 (2018). Google Scholar  48.Hook, A., Court, V., Sovacool, B. K. & Sorrell, S. A systematic review of the energy and climate impacts of teleworking. Environ. Res. Lett. 15, 09003 (2020). Google Scholar  49.Ewing, R. & Cervero, R. ‘Does compact development make people drive less?’ The answer is yes. J. Am. Plann. Assoc. 83, 19–25 (2017). Google Scholar  50.Creutzig, F. Making Smart Mobility Sustainable (Israel Public Policy Institute, 2020); https://www.ippi.org.il/smart-shared-mobility-experts-workshop51.Vecchio, R. & Cavallo, C. Increasing healthy food choices through nudges: a systematic review. Food Qual. Prefer. 78, 103714 (2019). Google Scholar  52.Bauer, J. M., Bietz, S., Rauber, J. & Reisch, L. A. Nudging healthier food choices in a cafeteria setting: a sequential multi-intervention field study. Appetite 160, 105106 (2021). Google Scholar  53.Bogueva, D., Marinova, D. & Raphaely, T. Reducing meat consumption: the case for social marketing. Asia Pac. J. Mark. Logist. 29, 477–500 (2017). Google Scholar  54.Delgado, L. & Shealy, T. Opportunities for greater energy efficiency in government facilities by aligning decision structures with advances in behavioral science. Renew. Sustain. Energy Rev. 82, 3952–3961 (2018). Google Scholar  55.Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018). Google Scholar  56.Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Providing decent living with minimum energy: a global scenario. Glob. Environ. Change 65, 102168 (2020). Google Scholar  57.Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021). Google Scholar  58.World Energy Outlook 2020 (IEA, 2020); https://www.iea.org/reports/world-energy-outlook-202059.Grieshop, A. P., Marshall, J. D. & Kandlikar, M. Health and climate benefits of cookstove replacement options. Energy Policy 39, 7530–7542 (2011).CAS  Google Scholar  60.Woodcock, J. et al. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 374, 1930–1943 (2009). Google Scholar  61.Creutzig, F., Mühlhoff, R. & Römer, J. Decarbonizing urban transport in European cities: four cases show possibly high co-benefits. Environ. Res. Lett. 7, 044042 (2012). Google Scholar  62.Ahmad, S., Goodman, A., Creutzig, F., Woodcock, J. & Tainio, M. A comparison of the health and environmental impacts of increasing urban density against increasing propensity to walk and cycle in Nashville, USA. Cities Health 4, 55–65 (2020). Google Scholar  63.Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2017). Google Scholar  64.Mazorra, J., Sánchez-Jacob, E., de la Sota, C., Fernández, L. & Lumbreras, J. A comprehensive analysis of cooking solutions co-benefits at household level: healthy lives and well-being, gender and climate change. Sci. Total Environ. 707, 135968 (2020).CAS  Google Scholar  65.Burton, E. in Sustainable Urban Form (eds Burton, E. et al.) 19–29 (Routledge, 2000).66.Raman, S. Designing a liveable compact city: physical forms of city and social life in urban neighbourhoods. Built Environ. 36, 63–80 (2010). Google Scholar  67.Golden, T. D., Veiga, J. F. & Dino, R. N. The impact of professional isolation on teleworker job performance and turnover intentions: does time spent teleworking, interacting face-to-face, or having access to communication-enhancing technology matter? J. Appl. Psychol. 93, 1412–1421 (2008). Google Scholar  68.Doray, N. Cognitive Biases in Corporate Climate Action: How Industry Leaders are Mitigating Cognitive Bias in the Transition to a Low-Carbon Economy. PhD thesis, York Univ. (2019).69.Mazur, C., Contestabile, M., Offer, G. J. & Brandon, N. P. Assessing and comparing German and UK transition policies for electric mobility. Environ. Innov. Soc. Transit. 14, 84–100 (2015). Google Scholar  70.Wang, T. et al. Health co-benefits of achieving sustainable net-zero greenhouse gas emissions in California. Nat. Sustain. 3, 597–605 (2020).71.Karlsson, M., Alfredsson, E. & Westling, N. Climate policy co-benefits: a review. Clim. Policy 20, 292–316 (2020). Google Scholar  72.Klimaneutrales Deutschland 2045: Wie Deutschland seine Klimaziele schon vor 2050 erreichen kann (Prognos, Öko-Institut, Wuppertal-Institut, 2021); https://www.agora-energiewende.de/presse/neuigkeiten-archiv/klimaneutralitaet-in-deutschland-bereits-2045-moeglich/ (2021).73.Giallouros, G., Kouis, P., Papatheodorou, S. I., Woodcock, J. & Tainio, M. The long-term impact of restricting cycling and walking during high air pollution days on all-cause mortality: health impact assessment study. Environ. Int. 140, 105679 (2020).CAS  Google Scholar  74.Ürge-Vorsatz, D., Herrero, S. T., Dubash, N. K. & Lecocq, F. Measuring the co-benefits of climate change mitigation. Annu. Rev. Environ. Resour. 39, 549–582 (2014). Google Scholar  75.Dastrup, S. R., Zivin, J. G., Costa, D. L. & Kahn, M. E. Understanding the solar home price premium: electricity generation and ‘green’ social status. Eur. Economic Rev. 56, 961–973 (2012). Google Scholar  76.Ramakrishnan, A. & Creutzig, F. Status consciousness in energy consumption decisions: a systematic review. Environ. Res. Lett. 16, 053010 (2021).77.Springmann, M. et al. Health-motivated taxes on red and processed meat: a modelling study on optimal tax levels and associated health impacts. PLoS ONE 13, e0204139 (2018). Google Scholar  78.Sulikova, S., van den Bijgaart, I., Klenert, D. & Mattauch, L. Optimal Fuel Taxation with Suboptimal Health Choices Working Paper in Economics 794 (Univ. of Gothenburg, 2020); https://ideas.repec.org/p/hhs/gunwpe/0794.html79.Kuhnhenn, K., Costa, L., Mahnke, E., Schneider, L. & Lange, S. A Societal Transformation Scenario for Staying Below 1.5 °C (Heinrich Böll Foundation and Konzeptwerk
https://www.nature.com/articles/s41558-021-01219-y