Comprehensive analysis of the ceRNA network in coronary artery disease

1.Sharma, M. & Ganguly, N. K. Premature coronary artery disease in Indians and its associated risk factors. Vasc. Health Risk Manag. 1(3), 217–225 (2005).PubMed  PubMed Central  Google Scholar  2.Krantz, D. S. & McCeney, M. K. Effects of psychological and social factors on organic disease: A critical assessment of research on coronary heart disease. Annu. Rev. Psychol. 53, 341–369 (2002).PubMed  Google Scholar  3.Fan, R. et al. Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics. RNA Biol. 16(6), 707–718 (2019).PubMed  PubMed Central  Google Scholar  4.Kim, T. H. et al. Conserved functional characteristics of the PIWI family members in chicken germ cell lineage. Theriogenology 78(9), 1948–1959 (2012).CAS  PubMed  Google Scholar  5.Pasquinelli, A. E. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13(4), 271–282 (2012).CAS  PubMed  Google Scholar  6.Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4(121), 121ra18 (2012).PubMed  PubMed Central  Google Scholar  7.Zhu, K. et al. Developing miRNA therapeutics for cardiac repair in ischemic heart disease. J. Thorac. Dis. 8(9), E918–E927 (2016).PubMed  PubMed Central  Google Scholar  8.Jenkins, A. M., Waterhouse, R. M. & Muskavitch, M. A. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genom. 16(1), 337 (2015). Google Scholar  9.He, Y. et al. Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett. 344(1), 20–27 (2014).ADS  CAS  PubMed  Google Scholar  10.Li, L. et al. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis 275, 359–367 (2018).CAS  PubMed  Google Scholar  11.Liao, J. et al. LncRNA MIAT: Myocardial infarction associated and more. Gene 578(2), 158–161 (2016).CAS  PubMed  Google Scholar  12.Iacobucci, I. et al. A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res. 35(8), 1052–1059 (2011).CAS  PubMed  Google Scholar  13.Zhuang, J. et al. Methylation of p15INK4b and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. PLoS ONE 7(10), e47193 (2012).ADS  CAS  PubMed  PubMed Central  Google Scholar  14.Clough, E. & Barrett, T. The gene expression omnibus database. Methods Mol. Biol. 1418, 93–110 (2016).PubMed  PubMed Central  Google Scholar  15.Smyth, G. K. Limma: Linear Models for Microarray Data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor 397–420 (Springer, 2005). Google Scholar  16.Vejnar, C. E. & Zdobnov, E. M. Zdobnov. MiRmap: Comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 40(22), 11673–11683 (2012).CAS  PubMed  PubMed Central  Google Scholar  17.Wang, S. et al. GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda. BMC Med. Genom. 7(Suppl 1), S9 (2014). Google Scholar  18.Wong, N. & Wang, X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43(Database), D146–D152 (2015).CAS  PubMed  Google Scholar  19.Edris, B. A comparison of the Oligomap and TargetScan algorithms for miRNA target analysis. Bmi231. stanford. edu (2011).20.Hsu, S. D. et al. miRTarBase: A database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 39(Suppl 1), D163–D169 (2011).CAS  PubMed  Google Scholar  21.Yang, J. H. et al. starBase: A database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 39(Database), D163–D169 (2011). Google Scholar  22.Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).CAS  PubMed  PubMed Central  Google Scholar  23.von Mering, C. et al. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 31(1), 258–261 (2003). Google Scholar  24.Chin, C. H. et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl 4), S11 (2014).PubMed  PubMed Central  Google Scholar  25.Harris, M. A. et al. The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 32(Database), D258–D261 (2004).CAS  PubMed  Google Scholar  26.Kanehisa, M. The KEGG database. Novartis Found. Symp. 247, 91–252 (2002).CAS  PubMed  Google Scholar  27.Kumar, L. E. & Futschik, M. Mfuzz: A software package for soft clustering of microarray data. Bioinformation 2(1), 5–7 (2007).PubMed  PubMed Central  Google Scholar  28.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000).CAS  PubMed  PubMed Central  Google Scholar  29.Chen, X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci. Rep. 5, 13186 (2015).ADS  CAS  PubMed  PubMed Central  Google Scholar  30.Li, X. et al. Long noncoding RNAs: Insights from biological features and functions to diseases. Med. Res. Rev. 33(3), 517–553 (2013).PubMed  Google Scholar  31.Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12(23), 3693–3702 (1998).CAS  PubMed  PubMed Central  Google Scholar  32.Ma, C. et al. The growth arrest-specific transcript 5 (GAS5): A pivotal tumor suppressor long noncoding RNA in human cancers. Tumour Biol. 37(2), 1437–1444 (2016).CAS  PubMed  Google Scholar  33.Conigliaro, A. et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer 14, 155 (2015).PubMed  PubMed Central  Google Scholar  34.Wang, L. et al. Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal cell carcinoma. Neoplasma 62(3), 412–418 (2015).CAS  PubMed  Google Scholar  35.Cui, J. et al. c-Myc-activated long non-coding RNA H19 downregulates miR-107 and promotes cell cycle progression of non-small cell lung cancer. Int. J. Clin. Exp. Pathol. 8(10), 12400–12409 (2015).CAS  PubMed  PubMed Central  Google Scholar  36.Zhang, E. et al. c-Myc-regulated long non-coding RNA H19 indicates a poor prognosis and affects cell proliferation in non-small-cell lung cancer. Tumour Biol. 37(3), 4007–4015 (2016).CAS  PubMed  Google Scholar  37.Xiong, G., Jiang, X. & Song, T. The overexpression of lncRNA H19 as a diagnostic marker for coronary artery disease. Rev. Assoc. Med. Bras. 65(2), 110–117 (2019).PubMed  Google Scholar  38.Zhang, Z. et al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci. Rep. 7(1), 7491 (2017).ADS  PubMed  PubMed Central  Google Scholar  39.Zhang, Y., Du, W. & Yang, B. Long non-coding RNAs as new regulators of cardiac electrophysiology and arrhythmias: Molecular mechanisms, therapeutic implications and challenges. Pharmacol. Ther. 203, 107389 (2019).CAS  PubMed  Google Scholar  40.Zhang, Y. et al. KCNQ1OT1, HIF1A-AS2 and APOA1-AS are promising novel biomarkers for diagnosis of coronary artery disease. Clin. Exp. Pharmacol. Physiol. 46(7), 635–642 (2019).CAS  PubMed  Google Scholar  41.Allegra, A. et al. Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer. Int. J. Oncol. 41(6), 1897–1912 (2012).CAS  PubMed  Google Scholar  42.Rizvi, F. et al. Noninvasive biomarker-based risk stratification for development of new onset atrial fibrillation after coronary artery bypass surgery. Int. J. Cardiol. 307, 55–62 (2020).PubMed  PubMed Central  Google Scholar  43.Niu, Y. et al. Physcion 8-O-β-glucopyranoside induced ferroptosis via regulating miR-103a-3p/GLS2 axis in gastric cancer. Life Sci. 237, 116893 (2019).CAS  PubMed  Google Scholar  44.Liu, Y. et al. Use of gated myocardial perfusion imaging to assess clinical value of xinmailong injection in chronic congestive heart failure. J. Tradit. Chin. Med. 34(5), 555–559 (2014).PubMed  Google Scholar  45.Maharjan, S. et al. Regulation of microRNAs on cellular expression levels of myocardial angiotensin-converting enzyme. Physiol. Genom. 46(24), 860–865 (2014).CAS  Google Scholar  46.Modi, W. S. et al. Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster along with several other members of the platelet factor 4 gene superfamily. Hum. Genet. 84(2), 185–187 (1990).CAS  PubMed  Google Scholar  47.Schraufstatter, I. U., Chung, J. & Burger, M. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am. J. Physiol. Lung Cell Mol. Physiol. 280(6), L1094–L1103 (2001).CAS  PubMed  Google Scholar  48.Romagnani, P. et al. CXC chemokines: The regulatory link between inflammation and angiogenesis. Trends Immunol. 25(4), 201–209 (2004).CAS  PubMed  Google Scholar  49.McPherson, R. & Davies, R. W. Inflammation and coronary artery disease: Insights from genetic studies. Can. J. Cardiol. 28(6), 662–666 (2012).PubMed  Google Scholar  50.Yoshie, O. & Matsushima, K. CCR4 and its ligands: From bench to bedside. Int. Immunol. 27(1), 11–20 (2015).CAS  PubMed  Google Scholar  51.de Jager, S. C. et al. Leukocyte-specific CCL3 deficiency inhibits atherosclerotic lesion development by affecting neutrophil accumulation. Arterioscler Thromb. Vasc. Biol. 33(3), e75–e83 (2013).PubMed  Google Scholar  Page 2 Scientific Reports (Sci Rep) ISSN 2045-2322 (online)
https://www.nature.com/articles/s41598-021-03688-9