1.Sharma, M. & Ganguly, N. K. Premature coronary artery disease in Indians and its associated risk factors. Vasc. Health Risk Manag. 1(3), 217–225 (2005).PubMed PubMed Central Google Scholar 2.Krantz, D. S. & McCeney, M. K. Effects of psychological and social factors on organic disease: A critical assessment of research on coronary heart disease. Annu. Rev. Psychol. 53, 341–369 (2002).PubMed Google Scholar 3.Fan, R. et al. Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics. RNA Biol. 16(6), 707–718 (2019).PubMed PubMed Central Google Scholar 4.Kim, T. H. et al. Conserved functional characteristics of the PIWI family members in chicken germ cell lineage. Theriogenology 78(9), 1948–1959 (2012).CAS PubMed Google Scholar 5.Pasquinelli, A. E. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13(4), 271–282 (2012).CAS PubMed Google Scholar 6.Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4(121), 121ra18 (2012).PubMed PubMed Central Google Scholar 7.Zhu, K. et al. Developing miRNA therapeutics for cardiac repair in ischemic heart disease. J. Thorac. Dis. 8(9), E918–E927 (2016).PubMed PubMed Central Google Scholar 8.Jenkins, A. M., Waterhouse, R. M. & Muskavitch, M. A. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genom. 16(1), 337 (2015). Google Scholar 9.He, Y. et al. Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett. 344(1), 20–27 (2014).ADS CAS PubMed Google Scholar 10.Li, L. et al. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis 275, 359–367 (2018).CAS PubMed Google Scholar 11.Liao, J. et al. LncRNA MIAT: Myocardial infarction associated and more. Gene 578(2), 158–161 (2016).CAS PubMed Google Scholar 12.Iacobucci, I. et al. A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res. 35(8), 1052–1059 (2011).CAS PubMed Google Scholar 13.Zhuang, J. et al. Methylation of p15INK4b and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. PLoS ONE 7(10), e47193 (2012).ADS CAS PubMed PubMed Central Google Scholar 14.Clough, E. & Barrett, T. The gene expression omnibus database. Methods Mol. Biol. 1418, 93–110 (2016).PubMed PubMed Central Google Scholar 15.Smyth, G. K. Limma: Linear Models for Microarray Data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor 397–420 (Springer, 2005). Google Scholar 16.Vejnar, C. E. & Zdobnov, E. M. Zdobnov. MiRmap: Comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 40(22), 11673–11683 (2012).CAS PubMed PubMed Central Google Scholar 17.Wang, S. et al. GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda. BMC Med. Genom. 7(Suppl 1), S9 (2014). Google Scholar 18.Wong, N. & Wang, X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43(Database), D146–D152 (2015).CAS PubMed Google Scholar 19.Edris, B. A comparison of the Oligomap and TargetScan algorithms for miRNA target analysis. Bmi231. stanford. edu (2011).20.Hsu, S. D. et al. miRTarBase: A database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 39(Suppl 1), D163–D169 (2011).CAS PubMed Google Scholar 21.Yang, J. H. et al. starBase: A database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 39(Database), D163–D169 (2011). Google Scholar 22.Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).CAS PubMed PubMed Central Google Scholar 23.von Mering, C. et al. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 31(1), 258–261 (2003). Google Scholar 24.Chin, C. H. et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl 4), S11 (2014).PubMed PubMed Central Google Scholar 25.Harris, M. A. et al. The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 32(Database), D258–D261 (2004).CAS PubMed Google Scholar 26.Kanehisa, M. The KEGG database. Novartis Found. Symp. 247, 91–252 (2002).CAS PubMed Google Scholar 27.Kumar, L. E. & Futschik, M. Mfuzz: A software package for soft clustering of microarray data. Bioinformation 2(1), 5–7 (2007).PubMed PubMed Central Google Scholar 28.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000).CAS PubMed PubMed Central Google Scholar 29.Chen, X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci. Rep. 5, 13186 (2015).ADS CAS PubMed PubMed Central Google Scholar 30.Li, X. et al. Long noncoding RNAs: Insights from biological features and functions to diseases. Med. Res. Rev. 33(3), 517–553 (2013).PubMed Google Scholar 31.Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12(23), 3693–3702 (1998).CAS PubMed PubMed Central Google Scholar 32.Ma, C. et al. The growth arrest-specific transcript 5 (GAS5): A pivotal tumor suppressor long noncoding RNA in human cancers. Tumour Biol. 37(2), 1437–1444 (2016).CAS PubMed Google Scholar 33.Conigliaro, A. et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer 14, 155 (2015).PubMed PubMed Central Google Scholar 34.Wang, L. et al. Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal cell carcinoma. Neoplasma 62(3), 412–418 (2015).CAS PubMed Google Scholar 35.Cui, J. et al. c-Myc-activated long non-coding RNA H19 downregulates miR-107 and promotes cell cycle progression of non-small cell lung cancer. Int. J. Clin. Exp. Pathol. 8(10), 12400–12409 (2015).CAS PubMed PubMed Central Google Scholar 36.Zhang, E. et al. c-Myc-regulated long non-coding RNA H19 indicates a poor prognosis and affects cell proliferation in non-small-cell lung cancer. Tumour Biol. 37(3), 4007–4015 (2016).CAS PubMed Google Scholar 37.Xiong, G., Jiang, X. & Song, T. The overexpression of lncRNA H19 as a diagnostic marker for coronary artery disease. Rev. Assoc. Med. Bras. 65(2), 110–117 (2019).PubMed Google Scholar 38.Zhang, Z. et al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci. Rep. 7(1), 7491 (2017).ADS PubMed PubMed Central Google Scholar 39.Zhang, Y., Du, W. & Yang, B. Long non-coding RNAs as new regulators of cardiac electrophysiology and arrhythmias: Molecular mechanisms, therapeutic implications and challenges. Pharmacol. Ther. 203, 107389 (2019).CAS PubMed Google Scholar 40.Zhang, Y. et al. KCNQ1OT1, HIF1A-AS2 and APOA1-AS are promising novel biomarkers for diagnosis of coronary artery disease. Clin. Exp. Pharmacol. Physiol. 46(7), 635–642 (2019).CAS PubMed Google Scholar 41.Allegra, A. et al. Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer. Int. J. Oncol. 41(6), 1897–1912 (2012).CAS PubMed Google Scholar 42.Rizvi, F. et al. Noninvasive biomarker-based risk stratification for development of new onset atrial fibrillation after coronary artery bypass surgery. Int. J. Cardiol. 307, 55–62 (2020).PubMed PubMed Central Google Scholar 43.Niu, Y. et al. Physcion 8-O-β-glucopyranoside induced ferroptosis via regulating miR-103a-3p/GLS2 axis in gastric cancer. Life Sci. 237, 116893 (2019).CAS PubMed Google Scholar 44.Liu, Y. et al. Use of gated myocardial perfusion imaging to assess clinical value of xinmailong injection in chronic congestive heart failure. J. Tradit. Chin. Med. 34(5), 555–559 (2014).PubMed Google Scholar 45.Maharjan, S. et al. Regulation of microRNAs on cellular expression levels of myocardial angiotensin-converting enzyme. Physiol. Genom. 46(24), 860–865 (2014).CAS Google Scholar 46.Modi, W. S. et al. Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster along with several other members of the platelet factor 4 gene superfamily. Hum. Genet. 84(2), 185–187 (1990).CAS PubMed Google Scholar 47.Schraufstatter, I. U., Chung, J. & Burger, M. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am. J. Physiol. Lung Cell Mol. Physiol. 280(6), L1094–L1103 (2001).CAS PubMed Google Scholar 48.Romagnani, P. et al. CXC chemokines: The regulatory link between inflammation and angiogenesis. Trends Immunol. 25(4), 201–209 (2004).CAS PubMed Google Scholar 49.McPherson, R. & Davies, R. W. Inflammation and coronary artery disease: Insights from genetic studies. Can. J. Cardiol. 28(6), 662–666 (2012).PubMed Google Scholar 50.Yoshie, O. & Matsushima, K. CCR4 and its ligands: From bench to bedside. Int. Immunol. 27(1), 11–20 (2015).CAS PubMed Google Scholar 51.de Jager, S. C. et al. Leukocyte-specific CCL3 deficiency inhibits atherosclerotic lesion development by affecting neutrophil accumulation. Arterioscler Thromb. Vasc. Biol. 33(3), e75–e83 (2013).PubMed Google Scholar Page 2 Scientific Reports (Sci Rep) ISSN 2045-2322 (online)
https://www.nature.com/articles/s41598-021-03688-9
Comprehensive analysis of the ceRNA network in coronary artery disease
