Carbon storage estimation in a secondary tropical forest at CIEE Sustainability Center, Monteverde, Costa Rica

1.Houghton, R. A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347. https://doi.org/10.1146/annurev.earth.35.031306.140057 (2007).ADS  CAS  Article  Google Scholar  2.US Environmental Protection Agency, Greenhouse Gas Emissions. Inventory of U.S. Greenhouse Gas Emissions and Sinks (2019). https://www.epa.gov/ghgemissions/overview-greenhouse-gases. Accessed Feb 2021.3.Buis, A. The atmosphere: Getting a handle on carbon dioxide. Sizing up humanity’s impacts on Earth’s changing atmosphere: a five-part series. Part Two. NASA Global Climate Change (2019). https://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/. Last updated 9 Feb 2021.4.Dyson, F. J. Can we control the carbon dioxide in the atmosphere? Energy 2, 287–291 (1977).Article  Google Scholar  5.Lindsey, R. Climate Change: Atmospheric Carbon Dioxide. https://www.climate.gov/print/8431 (2020).6.Blunden, J. & Arndt, D. S., Eds. State of the Climate in 2018. Bull. Am. Meteorol. Soc., 10(9), Si-S305. https://doi.org/10.1175/2019BAMSStateoftheClimate.1 (2019).7.Bruhwiler, L. et al. Observations of greenhouse gases as climate indicators. Clim. Change 165, 12. https://doi.org/10.1007/s10584-021-03001-7 (2021).ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  8.Butler, J. H. & Montzka, S. A. The NOAA Annual Greenhouse Gas Index (AGGI). Global Monitoring Laboratory, Earth System Research Laboratories, R/GMD, 325 Boulder CO 80305-3328, 13 pp. (2020).9.Lashof, D. A. & Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 334, 529–531 (1990).ADS  Article  Google Scholar  10.Moore, B. III. & Braswell, B. H. The lifetime of excess atmospheric carbon dioxide. Global Biogeochem. Cycles 8(1), 23–38. https://doi.org/10.1029/93GB03392 (1994).ADS  CAS  Article  Google Scholar  11.Jacobson, M. Z. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res. 107(D19), 4410. https://doi.org/10.1029/2001JD001376 (2002).Article  Google Scholar  12.Jacobson, M. Z. Correction to ‘Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming’. J. Geophys. Res. 110(D14), 2005. https://doi.org/10.1029/2005JD005888 (2005).Article  Google Scholar  13.Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37(1), 117–134 (2009).ADS  CAS  Article  Google Scholar  14.Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).ADS  Article  Google Scholar  15.Archer, D. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. 110, C09S05 (2005).ADS  Article  Google Scholar  16.Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS  Article  Google Scholar  17.Simpkins, G. Progress in climate modelling, interview with Veronika Eyring. Nat. Clim. Change 7, 684–685. https://doi.org/10.1038/nclimate3398 (2017).ADS  Article  Google Scholar  18.Houghton, R. A. The emissions of carbon from deforestation and degradation in the tropics: past trends and future potential. Carbon Manag. 4(5), 539–546. https://doi.org/10.4155/cmt.13.41 (2013).CAS  Article  Google Scholar  19.Houghton, R. A., Byers, B. & Nassikas, A. A. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 5, 1022–1023 (2015).ADS  Article  Google Scholar  20.IPCC Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) (2018).21.Azar, C. & Rodhe, H. Targets for stabilization of atmospheric CO2. Science 276, 1818–1819 (1997).CAS  Article  Google Scholar  22.Azar, C., Lindgren, K., Larson, E. & Möllersten, K. Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim. Change 74(1–3), 47–79. https://doi.org/10.1007/s10584-005-3484-7 (2006).ADS  CAS  Article  Google Scholar  23.Hansen, J. et al. Target atmospheric CO2: Where should humanity aim?. Open Atmos. Sci. J. 2, 217–231 (2008).ADS  CAS  Article  Google Scholar  24.Kriegler, E. et al. Pathways limiting warming to 1.5°C: a tale of turning around in no time?. Philos. Trans. R. Soc. A 376, 20160457. https://doi.org/10.1098/rsta.2016.0457 (2018).ADS  CAS  Article  Google Scholar  25.Faeth, P., Cort, C. & Livermash, R. Evaluating the carbon sequestration benefits of forestry projects in developing countries. World Resources Institute, Washington DC. 96 pp (1994).26.IPCC Third Assessment Report Climate Change 2001: Mitigation. A Report of Working Group III of the Intergovernmental Panel on Climate Change. Chapter 4. Technological and Economic Potential of Options to Enhance, Maintain, and Manage Biological Carbon Reservoirs and Geo-Engineering. Kauppi, P. & Sedjo, R. (Lead Authors), 301–343 (2001).27.IPCC Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter- governmental Panel on Climate Change (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007).28.Houghton, R. A. et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecol. Monogr. 53(3), 235–262 (1983).CAS  Article  Google Scholar  29.Evans, J. & Turnbull, J. W. Plantation Forestry in the Tropics: The Role, Silviculture, and Use of Planted Forests for Industrial, Social, Environmental, and Agroforestry Purposes 3rd edn, 488 pp (Oxford University Press, 2004).30.Chou, S. W. & Gutiérrez-Espeleta, E. Ecuación para estimar la biomasa arbórea en los bosques tropicales de Costa Rica. Tecnología en Marcha. 26(2), 41–54 (2013).Article  Google Scholar  31.van Best, S., & van Dijk, S. Tropical forests – the facts and figures. Probos Foundation (2020). https://fair-and-precious.org. Downloaded Feb 20, 2021.32.FAO Global Forest Resources Assessment 2020—Key findings. Rome (2020) https://doi.org/10.4060/ca8753en.33.Goodman, R. C. & Herold, M. Why maintaining tropical forests is essential and urgent for a stable climate, in CGD Climate and Forest Paper Series #11 (Center for Global Development Climate and Forest, Washington, DC, 56 pp. (2014). http://www.cgdev.org/publication/why-maintaining-tropical-forests-essential-and-urgent-stable-climate-working-paper-385.34.Canet, G. et al. (2015). Avances de los resultados del Inventario Forestal Nacional de Costa Rica. (2015, July 28). Retrieved July 31, 2019 from http://www.sirefor.go.cr/?p=1200.35.Cedeño Vindas, M. & Rodriguez Rodriguez, J. L. Medición de Parcelas Permanentes en Bosque Primario Intervenido, Determinacion de Dinámica y Modelos de Crecimiento, Universidad Nacional, Costa Rica, 45 pp (2004).36.Holdridge, L. R. Determination of world plant formations from simple climatic data. Science 105(2727), 367–368. https://doi.org/10.1126/science.105.2727.367 (1947).ADS  CAS  Article  PubMed  Google Scholar  37.Holdridge, L. R. Ecología basada en zonas de vida. San José, Costa Rica, Editorial IICA; (1967) 206 pp [Translated, Holdrige, L. R., 1967. Life Zone Ecology. Tropical Science Center, San Jose, Costa Rica].38.Sánchez-Azofeifa, G.-A. Assessing Land Use/Cover Change in Costa Rica. Ph. D. Dissertation. University of New Hampshire, New Hampshire, 181 pp (1996).39.Sánchez-Monge, M. Protocolo de Establecimiento y Medición de Parcelas. Permanentes de Muestreo en Bosque Natural. Red de Parcelas Permanentes de Monitoreo de Ecosistemas Forestales. INISEFOR (2011) (Translated by J. Moy, 2018; Protocol for the Establishment and Measurement of Permanent Sampling Plots in Natural Forest; For the Network of Permanent Plots for the Monitoring of Forest Ecosystems).40.Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99. https://doi.org/10.1007/s00442-005-0100-x (2005).ADS  CAS  Article  PubMed  Google Scholar  41.Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190. https://doi.org/10.1111/gcb.12629 (2014).ADS  Article  Google Scholar  42.Cho, P., Mesh, S. & Kay, E. University of Belize Environmental Research Institute. Field Manual for Permanent Sampling Plot Establishment and Re-measurement, 27 pp.43.Condit, R. Methods for estimating above-ground biomass of forest and replacement vegetation in the tropics. Center for Tropical Forest Science Research Manual, 73 pp (2008).44.Feldpausch, T. R. et al. Height-diameter allometry of tropical forest trees. Biogeosciences 8, 1081–1106. https://doi.org/10.5194/bg-8-1081-2011 (2011).ADS  Article  Google Scholar  45.Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012,2012 (2012).ADS  Article  Google Scholar  46.Fonseca, G. W., Federico, A. G. & Rey, B. J. M. Modelos para estimar la biomasa de especies nativas en plantaciones y bosques secundarios en la zona Caribe de Costa Rica. Bosque (Valdivia) 30(1), 36–47. https://doi.org/10.4067/S0717-92002009000100006 (2009).Article  Google Scholar  47.Montero, M. M. & Montagnini, F. Modelos alométricos para la estimación de biomasa de diez especies nativas en plantaciones en la región Atlántica de Costa Rica. Recursos Naturales y Ambiente 45, 112–119 (2005). Google Scholar  48.Tenorio, C., Moya, R., Cynthia Salas, C. & Berrocal, A. Evaluation of wood properties from six native species of forest plantations in Costa Rica. Bosque 37(1), 71–84. https://doi.org/10.4067/S0717-92002016000100008 (2016).Article  Google Scholar  49.Zhou, X. et al. Dynamic allometric scaling of tree biomass and size. Nat. Plants 7, 42–49 (2021).Article  Google Scholar  50.National Standard. INTE/DN 03: Metodología para la cuantificación y reporte de remociones de gases de efecto invernadero producto de actividades forestales. Methodology for Quantification and Reporting Greenhouse Gas Removals Resulting from Forestry Activities. Instituto de Normas Tecnica de Costa Rica; INTEC, 33 pp (2016).51.Eggelston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K., Eds. IPCC Guidelines for National Greenhouse Gas Inventories, Institute for Gobal Environmental Startegies (IGES) for the IPCC (2006). https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.Page 2 Scientific Reports (Sci Rep) ISSN 2045-2322 (online)
https://www.nature.com/articles/s41598-021-03004-5