Assessing costs of Indonesian fires and the benefits of restoring peatland

1.Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 17, 798–818 (2011).ADS  Google Scholar  2.Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nat. Publ. Gr. 542, 86–90 (2017).CAS  Google Scholar  3.Posa, M. R. C., Wijedasa, L. S. & Corlett, R. T. Biodiversity and conservation of tropical peat swamp forests. Bioscience 61, 49–57 (2011). Google Scholar  4.Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016). Google Scholar  5.Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016). Google Scholar  6.Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000– 2012. Nat. Clim. Chang. 4, 1–6 (2014). Google Scholar  7.Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 1–9 (2019). Google Scholar  8.Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 11, 1–8 (2018). Google Scholar  9.Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1503–1514 (2010).ADS  Google Scholar  10.Dommain, R., Couwenberg, J., Glaser, P. H., Joosten, H. & Suryadiputra, I. N. N. Carbon storage and release in Indonesian peatlands since the last deglaciation. Quat. Sci. Rev. 97, 1–32 (2014).ADS  Google Scholar  11.Field, R. D., Van Der Werf, G. R. & Shen, S. S. P. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2, 185–188 (2009).ADS  CAS  Google Scholar  12.Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980-2000). Biogeosciences 9, 317–340 (2012).ADS  Google Scholar  13.Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 1–8 (2016). Google Scholar  14.Taufik, M. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Chang. 7, 428–431 (2017).ADS  Google Scholar  15.Adrianto, H. A., Spracklen, D. V. & Arnold, S. R. Relationship between fire and forest cover loss in Riau Province, Indonesia between 2001 and 2012. Forests 10, 1–17 (2019). Google Scholar  16.Gaveau, D. L. A. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Sci. Rep. 4, 1–7 (2014). Google Scholar  17.Taufik, M., Setiawan, B. I. & Van Lanen, H. A. J. Increased fire hazard in human-modified wetlands in Southeast Asia. Ambio J. Hum. Environ. 48, 363–373 (2018). Google Scholar  18.Miettinen, J., Hooijer, A., Wang, J., Shi, C. & Liew, S. C. Peatland degradation and conversion sequences and interrelations in Sumatra. Environ. Chang. 12, 729–737 (2012). Google Scholar  19.Heymann, J. et al. CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations. Geophys. Res. Lett. 44, 1537–1544 (2017).ADS  CAS  Google Scholar  20.Hu, Y., Fernandez-Anez, N., Smith, T. E. L. & Rein, G. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildl. Fire 27, 293–312 (2018).CAS  Google Scholar  21.Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. R. Soc. B 371, (2016).22.World Bank. The Cost of Fire An Economic Analysis of Indonesia’s 2015 Fire Crisis. https://olc.worldbank.org/content/cost-fire-economic-analysis-indonesia%E2%80%99s-2015-fire-crisis (2016).23.van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).ADS  Google Scholar  24.Kiely, L. et al. Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Environ. Res. Lett. 15, 1–12 (2020). Google Scholar  25.Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September-October 2015: Demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 1–10 (2016). Google Scholar  26.Crippa, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 1–9 (2016). Google Scholar  27.Kusumaningtyas, S. D. A. & Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 11, 1–11 (2016). Google Scholar  28.Harrison, S., Marlon, J. & Bartlein, P. in Changing Climates, Earth Systems and Society (ed. Dodson, J.) 21–48 (Springer Nature, 2010).29.Lohman, D. J., Bickford, D. & Sodhi, N. S. ENVIRONMENT: The Burning Issue. Science 316, 376 (2007).CAS  PubMed  Google Scholar  30.Varma, A. The economics of slash and burn: a case study of the 1997-1998 Indonesian forest fires. Ecol. Econ. 46, 159–171 (2003). Google Scholar  31.De Mendonça, M. J. C. et al. The economic cost of the use of fire in the Amazon. Ecol. Econ. 49, 89–105 (2004). Google Scholar  32.World Bank. Indonesia Economy Quarterly: Investing in People—December 2019. https://www.worldbank.org/en/country/indonesia/publication/december-2019-indonesia-economic-quarterlyinvesting-in-people (2019).33.Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).ADS  Google Scholar  34.Republic of Indonesia. Indonesia: First Nationally Determined Contribution. https://www4.unfccc.int/sites/NDCStaging/Pages/All.aspx (2016).35.Peatland Restoration Agency. Strategic Plan Peatland Restoration Agency 2016–2020. (2016).36.Adrianto, H. A., Spracklen, D. V., Arnold, S. R., Sitanggang, I. S. & Syaufina, L. Forest and land fires are mainly associated with deforestation in Riau Province, Indonesia. Remote Sens. 12, 1–12 (2020). Google Scholar  37.Rein, G., Cleaver, N., Ashton, C., Pironi, P. & Torero, J. L. The severity of smouldering peat fires and damage to the forest soil. Catena 74, 304–309 (2008). Google Scholar  38.Page, S. et al. Restoration ecology of lowland tropical peatlands in Southeast Asia: Current knowledge and future research directions. Ecosystems 12, 888–905 (2009).CAS  Google Scholar  39.Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 1–15 (2018). Google Scholar  40.Suwarno, A., van Noordwijk, M., Weikard, H. P. & Suyamto, D. Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES). Mitig. Adapt. Strateg. Glob. Chang. 23, 211–229 (2018).PubMed  Google Scholar  41.Tacconi, L. Fires in Indonesia: causes, costs and policy implications. CIFOR Occasional Paper (2002).42.Jayarathne, T. et al. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 18, 2585–2600 (2018).ADS  CAS  Google Scholar  43.Lohberger, S., Stängel, M., Atwood, E. C. & Siegert, F. Spatial evaluation of Indonesia’s 2015 fire-affected area and estimated carbon emissions using Sentinel-1. Glob. Chang. Biol. 24, 644–654 (2017).ADS  PubMed  Google Scholar  44.Simorangkir, D. Fire use: Is it really the cheaper land preparation method for large-scale plantations? Mitig. Adapt. Strateg. Glob. Chang. 12, 147–164 (2007). Google Scholar  45.Guyon, A. & Simorangkir, D. The Economics of Fire Use in Agriculture and Forestry—A preliminary Review for Indonesia. in Project FireFight South East Asia (Project FireFight South East Asia, 2002).46.Morello, T. et al. Fire, tractors, and health in the amazon: a cost-benefit analysis of fire policy. Land Econ. 95, 409–434 (2019). Google Scholar  47.Harrison, M. E. et al. Tropical forest and peatland conservation in Indonesia: challenges and directions. People Nat. 10, 1–25 (2019).CAS  Google Scholar  48.Dohong, A., Abdul Aziz, A. & Dargusch, P. A review of techniques for effective tropical Peatland Restoration. Wetlands 38, 275–292 (2018). Google Scholar  49.Curran, L. M. et al. Lowland forest loss in protected areas of Indonesian Borneo. Science 303, 1000–1003 (2004).ADS  CAS  PubMed  Google Scholar  50.Spracklen, B. D., Kalamandeen, M., Galbraith, D., Gloor, E. & Spracklen, D. V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10, 1–16 (2015). Google Scholar  51.Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in Sumatra. J. Biogeogr. 36, 2165–2175 (2009). Google Scholar  52.Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6, 1–14 (2011). Google Scholar  53.Brun, C. et al. Analysis of deforestation and protected area effectiveness in Indonesia: a comparison of Bayesian spatial models. Glob. Environ. Chang. 31, 285–295 (2015). Google Scholar  54.Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niñoinduced drought. Proc. Natl Acad. Sci. USA 113, 9204–9209 (2016).ADS  CAS  PubMed  PubMed Central  Google Scholar  55.Miettinen, J., Shi, C. & Liew, S. C. Fire distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on Peatland fires. Environ. Manag. 60, 747–757 (2017).ADS  Google Scholar  56.Konecny, K. et al. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Chang. Biol. 22, 1469–1480 (2016).ADS  PubMed  Google Scholar  57.Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. & Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena 114, 11–20 (2014). Google Scholar  58.Jaenicke, J., Wösten, H., Budiman, A. & Siegert, F. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig. Adapt. Strateg. Glob. Chang. 15, 223–239 (2010). Google Scholar  59.Busch, J. et al. Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. Proc. Natl Acad. Sci. USA 112, 1328–1333 (2015).ADS  CAS  PubMed  PubMed Central  Google Scholar  60.Irawan, S., Widiastomo, T., Tacconi, L., Watts, J. D. & Steni, B. Exploring the design of jurisdictional REDD+: The case of Central Kalimantan. Indonesia. Policy Econ. 108, 2–9 (2019). Google Scholar  61.Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990 From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 1–10 (2017). Google Scholar  62.Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–493 (2021).ADS  CAS  Google Scholar  63.Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D. & Kolka, R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manag. 12, 1–12 (2017). Google Scholar  64.Hansson, A. & Dargusch, P. An estimate of the financial cost of Peatland restoration in Indonesia. Case Stud. Environ. 2, 1–8 (2018). Google Scholar  65.Lin, Y., Wijedasa, L. S. & Chisholm, R. A. Singapore’s willingness to pay for mitigation of transboundary forest-fire haze from Indonesia. Environ. Res. Lett. 12, 1–8 (2017). Google Scholar  66.Barlow, J. et al. The critical importance of considering fire in REDD+ programs. Biol. Conserv. 154, 1–8 (2012). Google Scholar  67.Reddington, C. L. et al. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations. Atmos. Chem. Phys. Discuss. 16, 11083–11106 (2016).ADS  CAS  Google Scholar  68.Niwa, Y. et al. Estimation of fire-induced carbon emission from Equatorial Asia in 2015 by using in situ aircraft and ship observations. Atmos. Chem. Phys. Discuss. 9455-9473, 1–31 (2020). Google Scholar  69.Kim, P. S. et al. Sensitivity of population smoke exposure to fire locations in Equatorial Asia. Atmos. Environ. 102, 11–17 (2015).ADS  Google Scholar  70.Marlier, M. E. et al. El Niño and health risks from landscape fire emissions in southeast Asia. Nat. Clim. Chang. 3, 131–136 (2012).ADS  PubMed Central  Google Scholar  71.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS  CAS  PubMed  PubMed Central  Google Scholar  72.Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Chang. 43, 51–61 (2017). Google Scholar  73.Creed, I. F. et al. Managing forests for both downstream and downwind water. Front. Forest Glob. Chang. 2, 1–8 (2019). Google Scholar  74.Sinha, A. & Brault, S. Assessing sustainability of nontimber forest product extractions: how fire affects sustainability. Biodivers. Conserv. 14, 3537–3563 (2005). Google Scholar  75.Reid, C. E. et al. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124, 1334–1343 (2016).PubMed  PubMed Central  Google Scholar  76.Tacconi, L. & Ruchiat, Y. Livelihoods, fire and policy in eastern Indonesia. Singap. J. Trop. Geogr. 27, 67–81 (2006). Google Scholar  77.Je
https://www.nature.com/articles/s41467-021-27353-x