1.Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 17, 798–818 (2011).ADS Google Scholar 2.Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nat. Publ. Gr. 542, 86–90 (2017).CAS Google Scholar 3.Posa, M. R. C., Wijedasa, L. S. & Corlett, R. T. Biodiversity and conservation of tropical peat swamp forests. Bioscience 61, 49–57 (2011). Google Scholar 4.Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016). Google Scholar 5.Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016). Google Scholar 6.Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000– 2012. Nat. Clim. Chang. 4, 1–6 (2014). Google Scholar 7.Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 1–9 (2019). Google Scholar 8.Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 11, 1–8 (2018). Google Scholar 9.Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1503–1514 (2010).ADS Google Scholar 10.Dommain, R., Couwenberg, J., Glaser, P. H., Joosten, H. & Suryadiputra, I. N. N. Carbon storage and release in Indonesian peatlands since the last deglaciation. Quat. Sci. Rev. 97, 1–32 (2014).ADS Google Scholar 11.Field, R. D., Van Der Werf, G. R. & Shen, S. S. P. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2, 185–188 (2009).ADS CAS Google Scholar 12.Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980-2000). Biogeosciences 9, 317–340 (2012).ADS Google Scholar 13.Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 1–8 (2016). Google Scholar 14.Taufik, M. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Chang. 7, 428–431 (2017).ADS Google Scholar 15.Adrianto, H. A., Spracklen, D. V. & Arnold, S. R. Relationship between fire and forest cover loss in Riau Province, Indonesia between 2001 and 2012. Forests 10, 1–17 (2019). Google Scholar 16.Gaveau, D. L. A. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Sci. Rep. 4, 1–7 (2014). Google Scholar 17.Taufik, M., Setiawan, B. I. & Van Lanen, H. A. J. Increased fire hazard in human-modified wetlands in Southeast Asia. Ambio J. Hum. Environ. 48, 363–373 (2018). Google Scholar 18.Miettinen, J., Hooijer, A., Wang, J., Shi, C. & Liew, S. C. Peatland degradation and conversion sequences and interrelations in Sumatra. Environ. Chang. 12, 729–737 (2012). Google Scholar 19.Heymann, J. et al. CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations. Geophys. Res. Lett. 44, 1537–1544 (2017).ADS CAS Google Scholar 20.Hu, Y., Fernandez-Anez, N., Smith, T. E. L. & Rein, G. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildl. Fire 27, 293–312 (2018).CAS Google Scholar 21.Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. R. Soc. B 371, (2016).22.World Bank. The Cost of Fire An Economic Analysis of Indonesia’s 2015 Fire Crisis. https://olc.worldbank.org/content/cost-fire-economic-analysis-indonesia%E2%80%99s-2015-fire-crisis (2016).23.van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).ADS Google Scholar 24.Kiely, L. et al. Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Environ. Res. Lett. 15, 1–12 (2020). Google Scholar 25.Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September-October 2015: Demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 1–10 (2016). Google Scholar 26.Crippa, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 1–9 (2016). Google Scholar 27.Kusumaningtyas, S. D. A. & Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 11, 1–11 (2016). Google Scholar 28.Harrison, S., Marlon, J. & Bartlein, P. in Changing Climates, Earth Systems and Society (ed. Dodson, J.) 21–48 (Springer Nature, 2010).29.Lohman, D. J., Bickford, D. & Sodhi, N. S. ENVIRONMENT: The Burning Issue. Science 316, 376 (2007).CAS PubMed Google Scholar 30.Varma, A. The economics of slash and burn: a case study of the 1997-1998 Indonesian forest fires. Ecol. Econ. 46, 159–171 (2003). Google Scholar 31.De Mendonça, M. J. C. et al. The economic cost of the use of fire in the Amazon. Ecol. Econ. 49, 89–105 (2004). Google Scholar 32.World Bank. Indonesia Economy Quarterly: Investing in People—December 2019. https://www.worldbank.org/en/country/indonesia/publication/december-2019-indonesia-economic-quarterlyinvesting-in-people (2019).33.Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).ADS Google Scholar 34.Republic of Indonesia. Indonesia: First Nationally Determined Contribution. https://www4.unfccc.int/sites/NDCStaging/Pages/All.aspx (2016).35.Peatland Restoration Agency. Strategic Plan Peatland Restoration Agency 2016–2020. (2016).36.Adrianto, H. A., Spracklen, D. V., Arnold, S. R., Sitanggang, I. S. & Syaufina, L. Forest and land fires are mainly associated with deforestation in Riau Province, Indonesia. Remote Sens. 12, 1–12 (2020). Google Scholar 37.Rein, G., Cleaver, N., Ashton, C., Pironi, P. & Torero, J. L. The severity of smouldering peat fires and damage to the forest soil. Catena 74, 304–309 (2008). Google Scholar 38.Page, S. et al. Restoration ecology of lowland tropical peatlands in Southeast Asia: Current knowledge and future research directions. Ecosystems 12, 888–905 (2009).CAS Google Scholar 39.Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 1–15 (2018). Google Scholar 40.Suwarno, A., van Noordwijk, M., Weikard, H. P. & Suyamto, D. Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES). Mitig. Adapt. Strateg. Glob. Chang. 23, 211–229 (2018).PubMed Google Scholar 41.Tacconi, L. Fires in Indonesia: causes, costs and policy implications. CIFOR Occasional Paper (2002).42.Jayarathne, T. et al. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 18, 2585–2600 (2018).ADS CAS Google Scholar 43.Lohberger, S., Stängel, M., Atwood, E. C. & Siegert, F. Spatial evaluation of Indonesia’s 2015 fire-affected area and estimated carbon emissions using Sentinel-1. Glob. Chang. Biol. 24, 644–654 (2017).ADS PubMed Google Scholar 44.Simorangkir, D. Fire use: Is it really the cheaper land preparation method for large-scale plantations? Mitig. Adapt. Strateg. Glob. Chang. 12, 147–164 (2007). Google Scholar 45.Guyon, A. & Simorangkir, D. The Economics of Fire Use in Agriculture and Forestry—A preliminary Review for Indonesia. in Project FireFight South East Asia (Project FireFight South East Asia, 2002).46.Morello, T. et al. Fire, tractors, and health in the amazon: a cost-benefit analysis of fire policy. Land Econ. 95, 409–434 (2019). Google Scholar 47.Harrison, M. E. et al. Tropical forest and peatland conservation in Indonesia: challenges and directions. People Nat. 10, 1–25 (2019).CAS Google Scholar 48.Dohong, A., Abdul Aziz, A. & Dargusch, P. A review of techniques for effective tropical Peatland Restoration. Wetlands 38, 275–292 (2018). Google Scholar 49.Curran, L. M. et al. Lowland forest loss in protected areas of Indonesian Borneo. Science 303, 1000–1003 (2004).ADS CAS PubMed Google Scholar 50.Spracklen, B. D., Kalamandeen, M., Galbraith, D., Gloor, E. & Spracklen, D. V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10, 1–16 (2015). Google Scholar 51.Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in Sumatra. J. Biogeogr. 36, 2165–2175 (2009). Google Scholar 52.Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6, 1–14 (2011). Google Scholar 53.Brun, C. et al. Analysis of deforestation and protected area effectiveness in Indonesia: a comparison of Bayesian spatial models. Glob. Environ. Chang. 31, 285–295 (2015). Google Scholar 54.Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niñoinduced drought. Proc. Natl Acad. Sci. USA 113, 9204–9209 (2016).ADS CAS PubMed PubMed Central Google Scholar 55.Miettinen, J., Shi, C. & Liew, S. C. Fire distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on Peatland fires. Environ. Manag. 60, 747–757 (2017).ADS Google Scholar 56.Konecny, K. et al. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Chang. Biol. 22, 1469–1480 (2016).ADS PubMed Google Scholar 57.Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. & Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena 114, 11–20 (2014). Google Scholar 58.Jaenicke, J., Wösten, H., Budiman, A. & Siegert, F. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig. Adapt. Strateg. Glob. Chang. 15, 223–239 (2010). Google Scholar 59.Busch, J. et al. Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. Proc. Natl Acad. Sci. USA 112, 1328–1333 (2015).ADS CAS PubMed PubMed Central Google Scholar 60.Irawan, S., Widiastomo, T., Tacconi, L., Watts, J. D. & Steni, B. Exploring the design of jurisdictional REDD+: The case of Central Kalimantan. Indonesia. Policy Econ. 108, 2–9 (2019). Google Scholar 61.Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990 From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 1–10 (2017). Google Scholar 62.Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–493 (2021).ADS CAS Google Scholar 63.Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D. & Kolka, R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manag. 12, 1–12 (2017). Google Scholar 64.Hansson, A. & Dargusch, P. An estimate of the financial cost of Peatland restoration in Indonesia. Case Stud. Environ. 2, 1–8 (2018). Google Scholar 65.Lin, Y., Wijedasa, L. S. & Chisholm, R. A. Singapore’s willingness to pay for mitigation of transboundary forest-fire haze from Indonesia. Environ. Res. Lett. 12, 1–8 (2017). Google Scholar 66.Barlow, J. et al. The critical importance of considering fire in REDD+ programs. Biol. Conserv. 154, 1–8 (2012). Google Scholar 67.Reddington, C. L. et al. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations. Atmos. Chem. Phys. Discuss. 16, 11083–11106 (2016).ADS CAS Google Scholar 68.Niwa, Y. et al. Estimation of fire-induced carbon emission from Equatorial Asia in 2015 by using in situ aircraft and ship observations. Atmos. Chem. Phys. Discuss. 9455-9473, 1–31 (2020). Google Scholar 69.Kim, P. S. et al. Sensitivity of population smoke exposure to fire locations in Equatorial Asia. Atmos. Environ. 102, 11–17 (2015).ADS Google Scholar 70.Marlier, M. E. et al. El Niño and health risks from landscape fire emissions in southeast Asia. Nat. Clim. Chang. 3, 131–136 (2012).ADS PubMed Central Google Scholar 71.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS CAS PubMed PubMed Central Google Scholar 72.Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Chang. 43, 51–61 (2017). Google Scholar 73.Creed, I. F. et al. Managing forests for both downstream and downwind water. Front. Forest Glob. Chang. 2, 1–8 (2019). Google Scholar 74.Sinha, A. & Brault, S. Assessing sustainability of nontimber forest product extractions: how fire affects sustainability. Biodivers. Conserv. 14, 3537–3563 (2005). Google Scholar 75.Reid, C. E. et al. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124, 1334–1343 (2016).PubMed PubMed Central Google Scholar 76.Tacconi, L. & Ruchiat, Y. Livelihoods, fire and policy in eastern Indonesia. Singap. J. Trop. Geogr. 27, 67–81 (2006). Google Scholar 77.Je
https://www.nature.com/articles/s41467-021-27353-x
Assessing costs of Indonesian fires and the benefits of restoring peatland
