AI-generated characters for supporting personalized learning and well-being

1.Boden, M. A. & Edmonds, E. A. What is generative art? Digital Creativity 20, 21–46 (2009). Google Scholar  2.Goodfellow, I. et al. Generative adversarial nets. In Advances in Neural Information Processing Systems 2672–2680 (NIPS, 2014).3.Mirsky, Y. & Lee, W. The creation and detection of deepfakes: a survey. ACM Comput. Surveys 54, 1–41 (2021). Google Scholar  4.Karras, T. et al. Analyzing and improving the image quality of StyleGAN. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 8110–8119 (IEEE, 2020).5.Zhang, Y. et al. Learning to speak fluently in a foreign language: multilingual speech synthesis and cross-language voice cloning. Preprint at https://arxiv.org/abs/1907.04448 (2019).6.Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 1125–1134 (IEEE, 2017).7.Zhu, J., Shen, Y., Zhao, D. & Zhou, B. In-domain GAN inversion for real image editing. Preprint at https://arxiv.org/abs/2004.00049 (2020).8.Ramesh, A. Zero-shot text-to-image generation. In Proc. 38th International Conference on Machine Learning Vol. 139, 8821–8831 (PMLR, 2021).9.Takahashi, D. Deepdub uses AI to localize voice dubbing for foreign language films. Venture Beat (16 December 2020); https://venturebeat.com/2020/12/16/deepdub-uses-ai-to-localize-dubbing-for-foreign-language-films/10.Dalí lives (via artificial intelligence) (Salvador Dali Museum, 2020); https://thedali.org/exhibit/dali-lives/11.Westerlund, M. The emergence of deepfake technology: a review. Technol. Innov. Manag. Rev. 9, 40–53 (2019). Google Scholar  12.McCammon, M. N. in The Handbook of Communication Rights, Law and Ethics Ch. 24 (Wiley, 2021); https://doi.org/10.1002/9781119719564.ch2413.ReFace. Swap. Share. Hype. https://reface.app/ (accessed 10 July 2020).14.Pinscreen. The most advanced AI-driven virtual avatars. https://www.pinscreen.com/ (accessed 8 October 2020).15.Emilia, P. Who is Lil Miquela, the digital avatar instagram influencer? https://www.thecut.com/2018/05/lil-miquela-digital-avatar-instagram-influencer.html (accessed 24 December 2020).16.Prajwal, K. R., Mukhopadhyay, R., Namboodiri, V. P. & Jawahar, C. A lip sync expert is all you need for speech to lip generation in the wild. In Proc. 28th ACM International Conference on Multimedia 484-492 (ACM, 2020); https://doi.org/10.1145/3394171.341353217.Osimo, S. A., Pizarro, R., Spanlang, B. & Slater, M. Conversations between self and self as Sigmund Freud—a virtual body ownership paradigm for self counselling. Sci. Rep. 5, 13899 (2015). Google Scholar  18.Slater, M. et al. Virtually being Lenin enhances presence and engagement in a scene from the Russian revolution. Front. Robot. AI 5, 91 (2018). Google Scholar  19.Peck, T. C., Seinfeld, S., Aglioti, S. M. & Slater, M. Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious. Cogn. 22, 779–787 (2013). Google Scholar  20.Pataranutaporn, P., Vega Gálvez, T., Yoo, L., Chhetri, A. & Maes, P. Wearable wisdom: an intelligent audio-based system for mediating wisdom and advice. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems 1–8 (ACM, 2020); https://doi.org/10.1145/3334480.338309221.Soulmachines Inc. https://www.soulmachines.com/2018/08/meet-will-vectors-new-renewable-energy-educator-in-schools/ (accessed 25 April 2021).22.Deci, E. L., Vallerand, R. J., Pelletier, L. G. & Ryan, R. M. Motivation and education: the self-determination perspective. Educational Psychol. 26, 325–346 (1991). Google Scholar  23.Skinner, E. A. & Belmont, M. J. Motivation in the classroom: reciprocal effects of teacher behavior and student engagement across the school year. J. Educ. Psychol. 85, 571–581 (1993). Google Scholar  24.Alavi, M. & Leidner, D. E. Research commentary: technology-mediated learning—a call for greater depth and breadth of research. Inf. Syst. Res. 12, 1–10 (2001). Google Scholar  25.Hudson, I. & Hurter, J. Avatar types matter: review of avatar literature for performance purposes. In Proc. International Conference on Virtual, Augmented and Mixed Reality 14–21 (Springer, 2016).26.Kosmyna, N., Gross, A. & Maes, P. ‘The thinking cap 2.0′ preliminary study on fostering growth mindset of children by means of electroencephalography and perceived magic using artifacts from fictional sci-fi universes. In Proc. Interaction Design and Children Conference 458–469 (ACM, 2020).27.Edwards, C. Male professor turns himself into anime schoolgirl to teach students remotely during coronavirus lockdown. The U.S. Sun (18 March 2020); https://www.the-sun.com/lifestyle/tech/556889/male-professor-turns-himself-into-anime-schoolgirl-to-teach-students-remotely-during-coronavirus-lockdown/28.Kilteni, K., Bergstrom, I. & Slater, M. Drumming in immersive virtual reality: the body shapes the way we play. IEEE Trans. Vis. Comput. Graph. 19, 597–605 (2013). Google Scholar  29.Peck, T. C., Good, J. J. & Bourne, K. A. Inducing and mitigating stereotype threat through gendered virtual body-swap illusions. In Proc. 2020 CHI Conference on Human Factors in Computing Systems 1–13 (ACM, 2020).30.Guegan, J., Buisine, S., Mantelet, F., Maranzana, N. & Segonds, F. Avatar-mediated creativity: when embodying inventors makes engineers more creative. Comput. Human Behav. 61, 165–175 (2016). Google Scholar  31.Banakou, D., Kishore, S. & Slater, M. Virtually being Einstein results in an improvement in cognitive task performance and a decrease in age bias. Front. Psychol. 9, 917 (2018). Google Scholar  32.Leong, J. et al. Exploring the use of real-time camera filters on embodiment and creativity. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems 1–7 (ACM, 2021).33.Ames, C. Motivation: what teachers need to know. Teach. Coll. Rec. 91, 409–421 (1990). Google Scholar  34.Henderlong, J. & Lepper, M. R. The effects of praise on children’s intrinsic motivation: a review and synthesis. Psychol. Bull. 128, 774–795 (2002). Google Scholar  35.Bandura, A. Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84, 191–215 (1977). Google Scholar  36.Shiomi, M., Okumura, S., Kimoto, M., Iio, T. & Shimohara, K. Two is better than one: social rewards from two agents enhance offline improvements in motor skills more than single agent. PLoS ONE 15, e0240622 (2020). Google Scholar  37.Kory-Westlund, J. M. & Breazeal, C. A long-term study of young children’s rapport, social emulation and language learning with a peer-like robot playmate in preschool. Front. Robot. AI 6, 81 (2019). Google Scholar  38.Musek, J. & Polic, M. in Encyclopedia of Quality of Life and Well-Being Research (ed. Michalos, A. C.) 4752–4755 (Springer, 2014).39.National Institute of Mental Health. Mental illness; https://www.nimh.nih.gov/health/statistics/ (accessed 8 October 2021).40.Torous, J. & Weiss Roberts, L. Needed innovation in digital health and smartphone applications for mental health transparency and trusts. JAMA Psychiatry. 74, 437–438 (2017). Google Scholar  41.Zhou, L., Gao, J., Li, D. & Shum, H.-Y. The design and implementation of Xiaoice, an empathetic social chatbot. Comput. Linguistics 46, 53–93 (2020). Google Scholar  42.Laranjo, L. et al. Conversational agents in healthcare: a systematic review. J. Am. Med. Inform. Assoc. 25, 1248–1258 (2018). Google Scholar  43.Gaffney, H., Mansell, W. & Tai, S. Conversational agents in the treatment of mental health problems: mixed-method systematic review. JMIR Mental Health 6, e14166 (2019). Google Scholar  44.Loveys, K., Fricchione, G., Kolappa, K., Sagar, M. & Broadbent, E. Reducing patient loneliness with artificial agents: design insights from evolutionary neuropsychiatry. J. Med. Internet Res. 21, e13664 (2019). Google Scholar  45.Johnson, L. A. & Caldwell, B. E. Race, gender and therapist confidence: effects on satisfaction with the therapeutic relationship in MFT. Am. J. Family Therapy 39, 307–324 (2011). Google Scholar  46.Banerjee, A. & Sanyal, D. Dynamics of doctor-patient relationship: a cross-sectional study on concordance, trust and patient enablement. J. Family Community Med. 19, 12–19 (2012). Google Scholar  47.Matsangidou, M. et al. ‘Now i can see me’ designing a multi-user virtual reality remote psychotherapy for body weight and shape concerns. Hum. Comput. Interact. https://doi.org/10.1080/07370024.2020.1788945 (2020).48.Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S. & Torous, J. B. Chatbots and conversational agents in mental health: a review of the psychiatric landscape. Can. J. Psychiatry 64, 456–464 (2019). Google Scholar  49.Carvalho, M. R. D., Freire, R. C. & Nardi, A. E. Virtual reality as a mechanism for exposure therapy. World J. Biol. Psychiatry 11, 220–230 (2010). Google Scholar  50.Hershfield, H. E. et al. Increasing saving behavior through age-progressed renderings of the future self. J. Mark. Res. 48, S23–S37 (2011). Google Scholar  51.Son, G.-R., Therrien, B. & Whall, A. Implicit memory and familiarity among elders with dementia. J. Nurs. Scholarsh. 34, 263–267 (2002). Google Scholar  52.Pagnini, F. et al. Ageing as a mindset: a study protocol to rejuvenate older adults with a counterclockwise psychological intervention. BMJ Open 9, e030411 (2019). Google Scholar  53.Massimi, M., Odom, W., Kirk, D. & Banks, R. HCI at the end of life: understanding death, dying and the digital. In CHI’10 Extended Abstracts on Human Factors in Computing Systems 4477–4480 (ACM, 2010).54.Ohlheiser, A. The lonely reality of Zoom funerals. MIT Technology Review (13 April 2020); https://www.technologyreview.com/2020/04/13/999348/covid-19-grief-zoom-funerals/55.Massimi, M. & Baecker, R. M. Dealing with death in design: developing systems for the bereaved. In Proc. SIGCHI Conference on Human Factors in Computing Systems 1001–1010 (ACM, 2011).56.Newton, C. Speak, memory. The Verge (2016).57.Hamilton, I. What is wisdom? Business Insider (17 November 2018); https://www.businessinsider.com/eternime-and-replika-giving-life-to-the-dead-with-new-technology-2018-1158.Hayden, S. Mother meets recreation of her deceased child in VR https://www.roadtovr.com/mother-meets-recreation-of-deceased-child-in-vr/ (accessed 24 January 2021).59.Brooker, C. & Harris, O. Be right back. Episode of Black Mirror (2013).60.Villaronga, E. F. in Emotional Design in Human–Robot Interaction (eds Ayanoğlu, H. & Duarte, E.) 93–110 (Springer, 2019).61.Kapur, A. et al. Non-invasive silent speech recognition in multiple sclerosis with dysphonia. In Proc. Machine Learning for Health Workshop 25–38 (PMLR, 2020).62.Segalov, M. ‘i choose to thrive’: the man fighting motor neurone disease with cyborg technology. The Guardian (16 August 2021); https://www.theguardian.com/society/2020/aug/16/i-choose-to-thrive-the-man-fighting-motor-neurone-disease-with-cyborg-technology63.Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A. & Black, M. J. Capture, learning and synthesis of 3D speaking styles. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 10093–10103 (IEEE, 2019).64.Li, T., Bolkart, T., Black, M. J., Li, H. & Romero, J. Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. 36, 194 (2017). Google Scholar  65.Vougioukas, K., Petridis, S. & Pantic, M. Realistic speech-driven facial animation with GANs. Int. J. Comput. Vis. 128, 1398–1413 (2020). Google Scholar  66.Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E. & Sebe, N. First order motion model for image animation. In Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) 7137–7147 (Curran Associates, 2019).67.Jemine, C. et al. Automatic Multispeaker Voice Cloning. MSc thesis, Université de Liège (2019).68.Sutton, R. E. Image manipulation: then and now. In Selected Readings from the Symposium of the International Visual Literacy Association (1993).69.Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining and harnessing adversarial examples. Preprint at https://arxiv.org/abs/1412.6572 (2014).70.Rooney, B. Women and children first: technology and moral panic. The Wall Street Journal (11 June 2011); https://www.wsj.com/articles/BL-TEB-281471.Thompson, C. Texting isn’t the first new technology thought to impair social skills. Smithsonian Magazine (March 20116); https://www.smithsonianmag.com/innovation/texting-isnt-first-new-technology-thought-impair-social-skills-180958091/72.Müller, V. C. in The Stanford Encyclopedia of Philosophy summer 2021 edn (ed. Zalta, E. N.) (Stanford Univ., 2021); https://plato.stanford.edu/archives/sum2021/entries/ethics-ai/73.Langlois, S. ‘Donald Trump’ explains money laundering to his son-in-law in ‘deepfake’ video. Market Watch (19 September 2019); https://www.marketwatch.com/story/donald-trump-explains-money-laundering-to-his-son-in-law-in-deepfake-video-2019-09-1874.Rajendra-Nicolucci, C. Language-generating A.I. is a free speech nightmare. Slate (30 September 2020); https://slate.com/technology/2020/09/language-ai-gpt-3-free-speech-harassment.html75.Meskys, E., Kalpokiene, J., Jurcys, P. & Liaudanskas, A. Regulating deep fakes: legal and ethical considerations.J. Intellect. Prop. Law Pract. 15, 24–31 (2019). Google Scholar  76.Wagner, T. L. & Blewer, A. ‘The word real is no longer real’: deepfakes, gender, and the challenges of AI-altered video. Open Inf. Sci. 3, 32–46 (2019). Google Scholar  77.Fallis, D. The epistemic threat of deepfakes. Philos. Technol. https://doi.org/10.1007/s13347-020-00419-2 (2020).78.In event of moon disaster (MIT Center For Advanced Virtuality, 2020); https://moondisaster.org79.Ryan, E. The intersection of the Disney princess phenomenon and eating disorders. Response The Journal of Popular and American Culture https://responsejournal.net/issue/2016-08/article/intersection-disney-princess-phenomenon-and-eating-disorders (2016).80.Burroughs, B.
https://www.nature.com/articles/s42256-021-00417-9