A 3D structural SARS-CoV-2–human interactome to explore genetic and drug perturbations

1.COVID-19 Dashboard (Johns Hopkins University, 2020); https://coronavirus.jhu.edu/map.html2.Fehr, A. R. & Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1–23 (2015).CAS  PubMed  PubMed Central  Google Scholar  3.Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).CAS  PubMed  PubMed Central  Google Scholar  4.McIntosh, K. & Perlman, S. in Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases 8th edn (eds Bennett, J. E. et al.) 1928–1936 (2015).5.Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203 (2020).CAS  PubMed  PubMed Central  Google Scholar  6.Gupta, A. et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 26, 1017–1032 (2020).CAS  Google Scholar  7.Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).CAS  PubMed  PubMed Central  Google Scholar  8.Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 8, 475–481 (2020).CAS  PubMed  PubMed Central  Google Scholar  9.Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).CAS  PubMed  PubMed Central  Google Scholar  10.Palaiodimos, L. et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism 108, 154262 (2020).CAS  PubMed  PubMed Central  Google Scholar  11.Ferdinand, K. C. & Nasser, S. A. African-American COVID-19 mortality: a sentinel event. J. Am. Coll. Cardiol. 75, 2746–2748 (2020).CAS  PubMed  PubMed Central  Google Scholar  12.Killerby, M. E. et al. Characteristics associated with hospitalization among patients with COVID-19 – Metropolitan Atlanta, Georgia, March–April 2020. MMWR Morb. Mortal. Wkly Rep. 69, 790–794 (2020).CAS  PubMed  PubMed Central  Google Scholar  13.Raisi-Estabragh, Z. et al. Greater risk of severe COVID-19 in Black, Asian and minority ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: study of 1326 cases from the UK Biobank. J. Public Health 42, 451–460 (2020). Google Scholar  14.Moore, J. T. et al. Disparities in incidence of COVID-19 among underrepresented racial/ethnic groups in counties identified as hotspots during June 5–18, 2020 – 22 states, February–June 2020. MMWR Morb. Mortal. Wkly Rep. 69, 1122–1126 (2020).CAS  PubMed  PubMed Central  Google Scholar  15.Mahajan, U. V. & Larkins-Pettigrew, M. Racial demographics and COVID-19 confirmed cases and deaths: a correlational analysis of 2886 US counties. J. Public Health 42, 445–447 (2020). Google Scholar  16.Pfefferle, S. et al. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 7, e1002331 (2011).CAS  PubMed  PubMed Central  Google Scholar  17.Jager, S. et al. Global landscape of HIV–human protein complexes. Nature 481, 365–370 (2011).PubMed  PubMed Central  Google Scholar  18.Batra, J. et al. Protein interaction mapping identifies RBBP6 as a negative regulator of ebola virus replication. Cell 175, 1917–1930 (2018).CAS  PubMed  PubMed Central  Google Scholar  19.Shah, P. S. et al. Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and zika virus pathogenesis. Cell 175, 1931–1945 (2018).CAS  PubMed  PubMed Central  Google Scholar  20.Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).CAS  PubMed  PubMed Central  Google Scholar  21.Niemann, H. H. et al. Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB. Cell 130, 235–246 (2007).CAS  PubMed  Google Scholar  22.Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).CAS  PubMed  PubMed Central  Google Scholar  23.Xu, G. G., Guo, J. & Wu, Y. Chemokine receptor CCR5 antagonist maraviroc: medicinal chemistry and clinical applications. Curr. Top. Med. Chem. 14, 1504–1514 (2014).CAS  PubMed  PubMed Central  Google Scholar  24.Hayouka, Z. et al. Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc. Natl Acad. Sci. USA 104, 8316–8321 (2007).CAS  PubMed  PubMed Central  Google Scholar  25.Peat, T. S. et al. Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design. PLoS ONE 7, e40147 (2012).CAS  PubMed  PubMed Central  Google Scholar  26.Maginnis, M. S. Virus–receptor interactions: the key to cellular invasion. J. Mol. Biol. 430, 2590–2611 (2018).CAS  PubMed  PubMed Central  Google Scholar  27.Daczkowski, C. M. et al. Structural insights into the interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species. J. Mol. Biol. 429, 1661–1683 (2017).CAS  PubMed  PubMed Central  Google Scholar  28.Yao, J. et al. Mechanism of inhibition of retromer transport by the bacterial effector RidL. Proc. Natl Acad. Sci. USA 115, E1446–E1454 (2018).CAS  PubMed  PubMed Central  Google Scholar  29.Zhang, L. et al. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β. Proc. Natl Acad. Sci. USA 103, 13985–13990 (2006).CAS  PubMed  PubMed Central  Google Scholar  30.Jonker, H. R. et al. Structural properties of the promiscuous VP16 activation domain. Biochemistry 44, 827–839 (2005).CAS  PubMed  Google Scholar  31.Card, G. L. et al. Crystal structure of a γ-herpesvirus cyclin-cdk complex. EMBO J. 19, 2877–2888 (2000).CAS  PubMed  PubMed Central  Google Scholar  32.Smith, M., Honce, R. & Schultz-Cherry, S. Metabolic syndrome and viral pathogenesis: lessons from influenza and coronaviruses. J. Virol. 94, e00665-20 (2020).PubMed  PubMed Central  Google Scholar  33.Vidal, M. A unifying view of 21st century systems biology. FEBS Lett. 583, 3891–3894 (2009).CAS  PubMed  Google Scholar  34.Robinson, C. V., Sali, A. & Baumeister, W. The molecular sociology of the cell. Nature 450, 973–82. (2007).CAS  PubMed  Google Scholar  35.Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).CAS  PubMed  PubMed Central  Google Scholar  36.Scott, D. E. et al. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–50. (2016).CAS  PubMed  Google Scholar  37.Arkin, M. R., Tang, Y. & Wells, J. A. Small-molecule inhibitors of protein–protein interactions: progressing toward the reality. Chem. Biol. 21, 1102–1114 (2014).CAS  PubMed  PubMed Central  Google Scholar  38.Rooklin, D. et al. AlphaSpace: fragment-centric topographical mapping to target protein–protein interaction interfaces. J. Chem. Inf. Model. 55, 1585–1599 (2015).CAS  PubMed  PubMed Central  Google Scholar  39.Lampson, B. L. & Davids, M. S. The development and current use of BCL-2 inhibitors for the treatment of chronic lymphocytic leukemia. Curr. Hematol. Malig. Rep. 12, 11–19 (2017).PubMed  PubMed Central  Google Scholar  40.Schormann, N. et al. Identification of protein–protein interaction inhibitors targeting vaccinia virus processivity factor for development of antiviral agents. Antimicrob. Agents Chemother. 55, 5054–5062 (2011).CAS  PubMed  PubMed Central  Google Scholar  41.White, P. W. et al. Inhibition of human papillomavirus DNA replication by small molecule antagonists of the E1–E2 protein interaction. J. Biol. Chem. 278, 26765–26772 (2003).CAS  PubMed  Google Scholar  42.Goudreau, N. et al. Optimization and determination of the absolute configuration of a series of potent inhibitors of human papillomavirus type-11 E1–E2 protein–protein interaction: a combined medicinal chemistry, NMR and computational chemistry approach. Bioorg. Med. Chem. 15, 2690–2700 (2007).CAS  PubMed  Google Scholar  43.Brito, A. F. & Pinney, J. W. Protein–protein interactions in virus–host systems. Front. Microbiol. 8, 1557 (2017).PubMed  PubMed Central  Google Scholar  44.Meyer, M. J. et al. Interactome INSIDER: a structural interactome browser for genomic studies. Nat. Methods 15, 107–114 (2018).CAS  PubMed  PubMed Central  Google Scholar  45.Dominguez, C., Boelens, R. & Bonvin, A. M. HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).CAS  PubMed  Google Scholar  46.van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).PubMed  Google Scholar  47.Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).CAS  PubMed  PubMed Central  Google Scholar  48.Kirchdoerfer, R. N. et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 8, 15701 (2018).PubMed  PubMed Central  Google Scholar  49.Wang, Q. et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894–904 (2020).CAS  PubMed  PubMed Central  Google Scholar  50.Wrobel, A. G. et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol. 27, 763–767 (2020).CAS  PubMed  PubMed Central  Google Scholar  51.Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292 (2020).CAS  PubMed  PubMed Central  Google Scholar  52.Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).CAS  PubMed  PubMed Central  Google Scholar  53.Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).CAS  PubMed  PubMed Central  Google Scholar  54.Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).CAS  PubMed  PubMed Central  Google Scholar  55.Jordan, R. E. & Adab, P. Who is most likely to be infected with SARS-CoV-2? Lancet Infect. Dis. 20, 995–996 (2020).CAS  PubMed  PubMed Central  Google Scholar  56.Cao, Y. et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 6, 11 (2020).CAS  PubMed  PubMed Central  Google Scholar  57.Darbeheshti, F. & Rezaei, N. Genetic predisposition models to COVID-19 infection. Med. Hypotheses 142, 109818 (2020).CAS  PubMed  PubMed Central  Google Scholar  58.Zhao, Y. et al. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 202, 756–759 (2020).CAS  PubMed  PubMed Central  Google Scholar  59.Kortemme, T. & Baker, D. A simple physical model for binding energy hot spots in protein–protein complexes. Proc. Natl Acad. Sci. USA 99, 14116–14121 (2002).CAS  PubMed  PubMed Central  Google Scholar  60.Shulman-Peleg, A. et al. Spatial chemical conservation of hot spot interactions in protein–protein complexes. BMC Biol. 5, 43 (2007).PubMed  PubMed Central  Google Scholar  61.Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).CAS  PubMed  PubMed Central  Google Scholar  62.Suryamohan, K. et al. Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Commun. Biol. 4, 475 (2021).CAS  PubMed  PubMed Central  Google Scholar  63.Chan, K. K. et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 369, 1261–1265 (2020).CAS  PubMed  PubMed Central  Google Scholar  64.Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).CAS  PubMed  PubMed Central  Google Scholar  65.Pieper, U. et al. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 42, D336–D346 (2014).CAS  PubMed  Google Scholar  66.Guharoy, M. & Chakrabarti, P. Conserved residue clusters at protein–protein interfaces and their use in binding site identification. BMC Bioinf. 11, 286 (2010). Google Scholar  67.Gupta, R. et al. SARS-CoV-2 (COVID-19) structural and evolutionary dynamicome: insights into functional evolution and human genomics. J. Biol. Chem. 295, 11742–11753 (2020).CAS  PubMed  PubMed Central  Google Scholar  68.Stenson, P. D. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 21, 577–581 (2003).CAS  PubMed  Google Scholar  69.Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).CAS  PubMed  Google Scholar  70.Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).CAS  PubMed  PubMed Central  Google Scholar  71.Yang, J. et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J. Infect. Dis. 94, 91–95 (2020).CAS  PubMed  PubMed Central  Google Scholar  72.Sahni, N. et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161, 647–660 (2015).CAS  PubMed  PubMed Central  Google Scholar  73.Wang, X. et al. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat. Biotechnol. 30, 159–64. (2012).CAS  PubMed  PubMed Central  Google Scholar  74.Sim, N. L. et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40, W452–W457 (2012).CAS  PubMed  PubMed Central  Google Scholar  75.Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).CAS  PubMed  PubMed Central  Google Scholar  76.Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).CAS  PubMed  PubMed Central  Google Scholar  77.Braun, P. et al. An experimentally derived confidence score for binary protein–protein interactions. Nat. Methods 6, 91–97 (2009).CAS  PubMed  Google Scholar  78.Vo, T. V. et al. A proteome-wide fission yeast interactome reveals network evolution principles from yeasts to human. Cell 164, 310–323 (2016).CAS  PubMed  PubMed Central  Google
https://www.nature.com/articles/s41592-021-01318-w