1.Tran, P. T. M. et al. Cyclists’ personal exposure to traffic-related air pollution and its influence on bikeability. Transp. Res. Part D 88, 102563 (2020). Google Scholar 2.Elavsky, S. et al. Physical activity in an air-polluted environment: behavioral, psychological and neuroimaging protocol for a prospective cohort study (Healthy Aging in Industrial Environment study—Program 4). BMC Public Health 21, 126 (2021).CAS PubMed PubMed Central Google Scholar 3.Giles, L. V. & Koehle, M. S. The Health Effects of Exercising in Air Pollution. Sports Med 44, 223–249 (2014).PubMed Google Scholar 4.Pasqua, L. A. et al. Exercising in air pollution: The cleanest versus dirtiest cities challenge. Int. J. Environ. Res. Public Health 15(7), 1502 (2018).PubMed Central Google Scholar 5.Slezakova, K., Pereira, M. C. & Morais, S. Ultrafine particles: Levels in ambient air during outdoor sport activities. Environ. Pollut. 258, 113648 (2020).CAS PubMed Google Scholar 6.De Hartog, J. J., Boogaard, H., Nijland, H. & Hoek, G. Do the health benefits of cycling outweigh the risks?. Environ Health Perspect 118, 1109–1116 (2010).PubMed Central Google Scholar 7.Apparicio, P., Gelb, J., Jarry, V. & Lesage-Mann, É. Cycling in one of the most polluted cities in the world: Exposure to noise and air pollution and potential adverse health impacts in Delhi. Int. J. Health Geogr. 20(18), 1–16 (2021). Google Scholar 8.IQair Report, 2021 https://www.iqair.com/world-most-polluted-cities (accessed 29 Jul 2021).9.Richardson, E. A., Pearce, J., Tunstall, H., Mitchell, R. & Shortt, N. K. Particulate air pollution and health inequalities: A Europe-wide ecological analysis. Int. J. Health Geogr. 12, 34 (2013).PubMed PubMed Central Google Scholar 10.Kumar, P., Pirjola, L., Ketzel, M. & Harrison, R. M. Nanoparticle emissions from 11 nonvehicle exhaust sources: A review. Atmos. Environ. 67, 252–277 (2013).CAS ADS Google Scholar 11.Alemani, M., Nosko, O., Metinoz, I. & Olofsson, U. A study of emission of airborne wear particles from car brake friction pairs. SAE Int. J. Mater. Manf. 9(1), 147–157 (2016). Google Scholar 12.Nosko, O., Vanhanen, J. & Olofsson, U. Emission of 1.3–10 nm airborne particles from brake materials. Aerosol Sci. Technol. 51(1), 91–96 (2017).CAS ADS Google Scholar 13.Adamiec, E. & Jarosz-Krzemińska, E. Human health risk assessment associated with contaminants in the finest fraction of sidewalk dust collected in proximity to trafficked roads. Sci. Rep. 9, 16364 (2019).PubMed PubMed Central ADS Google Scholar 14.Font, O. et al. Origin and speciation of major and trace PM elements in the Barcelona subway system. Transp. Res. Part D 72(1506–1516), 17–35 (2019). Google Scholar 15.Gonet, T. & Maher, B. A. Airborne, vehicle-derived fe-bearing nanoparticles in the urban environment: A review. Environ. Sci. Technol. 53, 9970–9991 (2019).CAS PubMed ADS Google Scholar 16.Ma, J. et al. A comparison of airborne particles generated from disk brake contacts: Induction versus frictional heating. Tribol. Lett. 68, 38 (2020). Google Scholar 17.Grigoratos, T. & Martini, G. Brake wear particle emissions: a review. Environ. Sci. Pollut. Res. 22, 2491–2504 (2015).CAS Google Scholar 18.Adamiec, E., Jarosz-Krzemińska, E. & Wieszała, R. Heavy metals from nonexhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 188(369), 1–11 (2016).CAS Google Scholar 19.Werkenthin, M., Kluge, B. & Wessolek, G. Metals in European roadside soils and soil solution: A review. Environ. Pollut. J. 189, 98–110 (2014).CAS Google Scholar 20.Kupiainen, K. J. et al. Size and composition of airborne particles from pavement wear, tyres, and tractionsanding. Environ. Sci. Technol. 39(3), 699–706 (2005).CAS PubMed ADS Google Scholar 21.Harrison, R. M., Jones, A. M., Gietl, J., Yin, J. & Green, D. C. Estimation of the contributions of brake dust, tyre wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 46(12), 6523–6529 (2012).CAS PubMed ADS Google Scholar 22.Amato, F. et al. Urban air quality: The challenge of traffic nonexhaust emissions. J. Hazard. Mater. 275, 31–36 (2014).CAS PubMed Google Scholar 23.Amato, F. et al. Trends of road dust emissions contributions on ambient PM levels at rural, urban and industrial sites in Southern Spain. Atmos. Chem. Phys. 13, 31933–31963 (2013). Google Scholar 24.Lawrence, S. et al. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos. Environ. 77, 548–557 (2013).CAS ADS Google Scholar 25.Budai, P. & Clement, A. Spatial distribution patterns of four traffic-emitted heavy metals in urban road dust and the resuspension of brake-emitted particles: Findings of a field study. Transp. Res. Part D 62, 179–185 (2018). Google Scholar 26.Zhou, Q. et al. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant Northeast of China. Environ. Geochem. Health. 37, 207–220 (2015).CAS PubMed Google Scholar 27.Trojanowska, M. & Świetlik, R. Ocena narażenia mieszkańców miast na metale ciężkie obecne w pyłach ulicznych. Autobusy 12, 474–478 (2016) ((in Polish)). Google Scholar 28.McBride, M. B. Environmental issue toxic metal accumulation from agricultural use of sludge: Are USEPA regulations protective?. J. Environ. Qual. 24, 5 (1995).CAS Google Scholar 29.Ajala, A. O., Farinde, A. J. & Ogunjimi, S. I. Assessment of community factors influencing the effectiveness of improved cassava production technologies in Osun State, Nigeria. Int. J. Appl. Agric. Apicult. Res. 10, 145–153 (2014). Google Scholar 30.Adewuyi, G. O. & Osobamiro, T. Chemical speciation and potential mobility of some toxic metals in tropical agricultural soil. Res. J. Environ. Toxicol. 10(3), 159–165 (2016).CAS Google Scholar 31.Schleicher, N. J. et al. Temporal variability of trace metal mobility of urban particulate matter from Beijing: A contribution to health impact assessments of aerosols. Atmos. Environ. 45, 7248–7265 (2011).CAS ADS Google Scholar 32.Shams, M. et al. Heavy metals exposure, carcinogenic and non-carcinogenic human health risks assessment of groundwater around mines in Joghatai, Iran. Int. J. Environ. Anal. Chem. 7, 1–16 (2020). Google Scholar 33.Sadeghi, H., Fazlzadeh, M., Zarei, A., Mahvi, A. H. & Nazmara, S. Spatial distribution and contamination of heavy metals in surface water, groundwater and topsoil surrounding Moghan’s tannery site in Ardabil, Iran. Int. J. Environ. Anal. Chem. 9, 1–11 (2020). Google Scholar 34.Ahmad, W. et al. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 11, 17006 (2021).CAS PubMed PubMed Central ADS Google Scholar 35.Narwal, R. P. & Singh, B. R. Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water Air Soil Pollut. 103, 405–421 (1998).CAS ADS Google Scholar 36.Oyekunle, J. A. O., Adekunle, A. S., Ogunfowokan, A. O., Olutona, G. O. & Omolere, O. B. Bromate and trace metal levels in bread loaves from outlets within Ile-Ife Metropolis, Southwestern Nigeria. Toxicol. Rep. 1, 224–230 (2014).CAS PubMed PubMed Central Google Scholar 37.Gope, M., Masto, R. E., George, J., Hoque, R. R. & Balachandran, S. Contamination and risk assessment of Cr in road dust of Asansol: A medium sized city. Int. J. Bio-Resour. Environ. Agric. Sci. 2(2), 269–280 (2016). Google Scholar 38.Gope, M., Masto, R. E., George, J., Hoque, R. R. & Balachandran, S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 138, 231–241 (2017).CAS PubMed Google Scholar 39.Verla, E. N., Verla, E. W., Osisi, A. F., Okeke, P. M. & Enyoh, C. E. Finding a relationship between mobility factors of selected heavy metals and soil particle size in soils from children’s playgrounds. Environ. Monit. Assess. 191, 742 (2019).CAS PubMed Google Scholar 40.Adamiec, E. Road environments: Impact of metals on human health in heavily congested cities of Poland. Int. J. Environ. Res. Public Health 14(697), 1–17 (2017). Google Scholar 41.U.S. Environmental Protection Agency. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils, Revision 1 (EPA, 1996). Google Scholar 42.Environmental Protection Agency. Method 6020B: Inductively Coupled Plasma-Mass Spectrometry, Revision 2 (EPA, 1998). Google Scholar 43.Turekian, K. K. & Wedephol, H. H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 72, 175–192 (1961).CAS ADS Google Scholar 44.Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 2, 109–118 (1969). Google Scholar 45.Salomons, W. & Förstner, U. Metals in the Hydrocycle (Springer Verlag, 1985). Google Scholar 46.Ugwu, K. E. & Ofomatah, A. C. Concentration and risk assessment of toxic metals in indoor dust in selected schools in Southeast, Nigeria. SN Appl. Sci. 3, 43 (2021).CAS Google Scholar 47.U.S. Environmental Protection Agency. Exposure Factors Handbook 2011 Edition (Final). EPA/600/R-09/052F. https://www.nrc.gov/docs/ML1400/ML14007A666.pdf. (accessed 27 July 2021)48.Tan, S. Y., Praveena, S. M., Abidin, E. Z. & Cheema, M. S. A review of heavy metals in indoor dust and its human health-risk implications. Rev. Environ. Health. 31(4), 447–456 (2016).CAS PubMed Google Scholar 49.Regional Screening Levels (RSLs)—Generic Tables 2021. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed 19 Aug 2021).50.Yunesian, M., Rostami, R., Zarei, A., Fazlzadeh, M. & Janjani, H. Exposure to high levels of PM2.5 and PM10 in the metropolis of Tehran and the associated health risks during 2016–2017. Microchem. J. 150, 104174 (2019).CAS Google Scholar 51.Rostami, R. et al. Exposure and risk assessment of PAHs in indoor air of waterpipe cafés in Ardebil. Iran. Build. Environ. 155, 47–77 (2019). Google Scholar 52.U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual. Part A. Interim final (Office of Emergency and Remedial Response, US EPS, 1989). Google Scholar 53.Bigazzi, A. Y. Determination of active travel speed for minimum air pollution inhalation. Int. J. Sustain. Transp. 11(3), 221–229 (2017). Google Scholar Page 2 Scientific Reports (Sci Rep) ISSN 2045-2322 (online)
https://www.nature.com/articles/s41598-021-03111-3
Adverse health and environmental outcomes of cycling in heavily polluted urban environments
