1. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
2. Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).
3. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor LaO 1−x F x FeAs (x = 0.05−0.12) with T c = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008). The seminal observation of superconductivity in an iron-arsenide compound.
4. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO 1−x F x . Phys. Rev. Lett. 101, 057003 (2008). Theoretical proposal that the s+− superconducting state in FeSCs is mediated by spin fluctuations.
5. Kuroki, K., Usui, H., Onari, S., Arita, R. & Aoki, H. Pnictogen height as a possible switch between high-T c nodeless and low-T c nodal pairings in the iron-based superconductors. Phys. Rev. B 79, 224511 (2009). RPA calculation that shows the impact of the pnictogen height on the superconducting state.
6. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).
7. Chubukov, A. V. Pairing mechanism in Fe-based superconductors. Annu. Rev. Condens. Matter Phys. 3, 57–92 (2012). A pedagogical review that compares the RPA and renormalization group approaches to describe superconductivity in FeSCs.
8. Wang, F. & Lee, D.-H. The electron-pairing mechanism of iron-based superconductors. Science 332, 200–204 (2011).
9. Haule, K. & Kotliar, G. Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling. New J. Phys. 11, 025021 (2009). This theoretical work predicted the coherence–incoherence crossover caused by the Hund’s coupling, which later led to the concept of a Hund metal.
10. Yin, Z., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Mater. 10, 932–935 (2011). This study provides principles for organizing the families of FeSCs by their correlation strength and differentiation of the d xy orbitals.
11. Stadler, K. M., Yin, Z. P., von Delft, J., Kotliar, G. & Weichselbaum, A. Dynamical mean-field theory plus numerical renormalization-group study of spin-orbital separation in a three-band Hund metal. Phys. Rev. Lett. 115, 136401 (2015).
12. de’ Medici, L., Hassan, S. R., Capone, M. & Dai, X. Orbital-selective Mott transition out of band degeneracy lifting. Phys. Rev. Lett. 102, 126401 (2009).
13. Bascones, E., Valenzuela, B. & Calderón, M. J. Orbital differentiation and the role of orbital ordering in the magnetic state of Fe superconductors. Phys. Rev. B 86, 174508 (2012).
14. Yu, R. & Si, Q. Orbital-selective Mott phase in multiorbital models for alkaline iron selenides K 1−x Fe 2−y Se 2 . Phys. Rev. Lett. 110, 146402 (2013).
15. de’ Medici, L., Giovannetti, G. & Capone, M. Selective Mott physics as a key to iron superconductors. Phys. Rev. Lett. 112, 177001 (2014).
16. Georges, A., Medici, L. D. & Mravlje, J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).
17. Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).
18. Lumsden, M. D. & Christianson, A. D. Magnetism in Fe-based superconductors. J. Phys. Condens. Matter 22, 203203 (2010). A topical review that surveys early neutron scattering data on FeSCs, including the observation of spin-resonance modes in the superconducting state.
19. Inosov, D. et al. Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe 1.85 Co 0.15 As 2 . Nat. Phys. 6, 178–181 (2010).
20. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).
21. Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).
22. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012). Elastoresistivity measurements reveal the presence of nematic fluctuations across the phase diagram of an FeSC compound.
23. Böhmer, A. E. et al. Nematic susceptibility of hole-doped and electron-doped BaFe 2 As 2 iron-based superconductors from shear modulus measurements. Phys. Rev. Lett. 112, 047001 (2014).
24. Gallais, Y. et al. Observation of incipient charge nematicity in Ba(Fe 1−X Co X )2As 2 . Phys. Rev. Lett. 111, 267001 (2013).
25. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018). ARPES measurements reveal surface topological spin-helical states in FeTe 1−x Se x .
26. Singh, D. J. & Du, M.-H. Density functional study of LaFeAsO 1−x F x : a low carrier density superconductor near itinerant magnetism. Phys. Rev. Lett. 100, 237003 (2008).
27. Eschrig, H. & Koepernik, K. Tight-binding models for the iron-based superconductors. Phys. Rev. B 80, 104503 (2009).
28. Cvetkovic, V. & Vafek, O. Space group symmetry, spin–orbit coupling, and the low-energy effective Hamiltonian for iron-based superconductors. Phys. Rev. B 88, 134510 (2013).
29. Borisenko, S. et al. Direct observation of spin–orbit coupling in iron-based superconductors. Nat. Phys. 12, 311–317 (2016).
30. Wang, Z. et al. Topological nature of the FeSe 0.5 Te 0.5 superconductor. Phys. Rev. B 92, 115119 (2015).
31. Yang, W. L. et al. Evidence for weak electronic correlations in iron pnictides. Phys. Rev. B 80, 014508 (2009).
32. Coldea, A. I. Electronic nematic states tuned by isoelectronic substitution in bulk FeSe 1−x S x . Front. Phys. 8, 594500 (2021).
33. Richard, P., Qian, T. & Ding, H. ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism. J. Phys. Condens. Matter 27, 293203 (2015).
34. Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Role of the orbital degree of freedom in iron-based superconductors. npj Quantum Mater. 2, 57 (2017).
35. Carrington, A. Quantum oscillation studies of the Fermi surface of iron-pnictide superconductors. Rep. Prog. Phys. 74, 124507 (2011).
36. Coldea, A. I. et al. Fermi surface of superconducting LaFePO determined from quantum oscillations. Phys. Rev. Lett. 101, 216402 (2008).
37. Qazilbash, M. et al. Electronic correlations in the iron pnictides. Nat. Phys. 5, 647–650 (2009).
38. Haule, K., Shim, J. H. & Kotliar, G. Correlated electronic structure of LaO 1−x F x FeAs. Phys. Rev. Lett. 100, 226402 (2008).
39. Skornyakov, S. L. et al. Classification of the electronic correlation strength in the iron pnictides: the case of the parent compound BaFe 2 As 2 . Phys. Rev. B 80, 092501 (2009).
40. Werner, P. et al. Satellites and large doping and temperature dependence of electronic properties in hole-doped BaFe 2 As 2 . Nat. Phys. 8, 331–337 (2012).
41. Ferber, J., Foyevtsova, K., Valentí, R. & Jeschke, H. O. LDA + DMFT study of the effects of correlation in LiFeAs. Phys. Rev. B 85, 094505 (2012).
42. Lee, G. et al. Orbital selective Fermi surface shifts and mechanism of high T c superconductivity in correlated AFeAs (A = Li, Na). Phys. Rev. Lett. 109, 177001 (2012).
43. Borisenko, S. V. et al. Superconductivity without nesting in LiFeAs. Phys. Rev. Lett. 105, 067002 (2010).
44. Fanfarillo, L. et al. Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe. Phys. Rev. B 94, 155138 (2016).
45. Ortenzi, L., Cappelluti, E., Benfatto, L. & Pietronero, L. Fermi-surface shrinking and interband coupling in iron-based pnictides. Phys. Rev. Lett. 103, 046404 (2009).
46. Zantout, K., Backes, S. & Valentí, R. Effect of nonlocal correlations on the electronic structure of LiFeAs. Phys. Rev. Lett. 123, 256401 (2019).
47. Tomczak, J. M., van Schilfgaarde, M. & Kotliar, G. Many-body effects in iron pnictides and chalcogenides: nonlocal versus dynamic origin of effective masses. Phys. Rev. Lett. 109, 237010 (2012).
48. van der Marel, D. & Sawatzky, G. A. Electron–electron interaction and localization in d and f transition metals. Phys. Rev. B 37, 10674 (1988).
49. Hardy, F. et al. Evidence of strong correlations and coherence–incoherence crossover in the iron pnictide superconductor KFe 2 As 2 . Phys. Rev. Lett. 111, 027002 (2013).
50. Yin, Z. P., Haule, K. & Kotliar, G. Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: insights from first-principles calculations. Phys. Rev. B 86, 195141 (2012).
51. Kreisel, A., Hirschfeld, P. J. & Andersen, B. M. On the remarkable superconductivity of FeSe and its close cousins. Symmetry 12, 1402 (2020).
52. Yu, R., Zhu, J.-X. & Si, Q. Orbital-selective superconductivity, gap anisotropy, and spin resonance excitations in a multiorbital t–J 1 –J 2 model for iron pnictides. Phys. Rev. B 89, 024509 (2014).
53. Fanfarillo, L., Valli, A. & Capone, M. Synergy between Hund-driven correlations and boson-mediated superconductivity. Phys. Rev. Lett. 125, 177001 (2020).
54. Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017). STM observation of a strong gap anisotropy in FeSe and proposal of orbital differentiation inside the superconducting state.
55. Rhodes, L. C. et al. Scaling of the superconducting gap with orbital character in FeSe. Phys. Rev. B 98, 180503 (2018).
56. Liu, D. et al. Orbital origin of extremely anisotropic superconducting gap in nematic phase of FeSe superconductor. Phys. Rev. X 8, 031033 (2018).
57. Yin, Z., Haule, K. & Kotliar, G. Spin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors. Nat. Phys. 10, 845–850 (2014).
58. Pelliciari, J. et al. Magnetic moment evolution and spin freezing in doped BaFe 2 As 2 . Sci. Rep. 7, 8003 (2017).
59. Wang, M. et al. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides. Nat. Commun. 4, 2874 (2013).
60. Christensen, M. H., Kang, J., Andersen, B. M., Eremin, I. & Fernandes, R. M. Spin reorientation driven by the interplay between spin-orbit coupling and Hund’s rule coupling in iron pnictides. Phys. Rev. B 92, 214509 (2015).
61. Qureshi, N. et al. Inelastic neutron-scattering measurements of incommensurate magnetic excitations on superconducting LiFeAs single crystals. Phys. Rev. Lett. 108, 117001 (2012).
62. Wang, Q. et al. Magnetic ground state of FeSe. Nat. Commun. 7, 12182 (2016).
63. Lumsden, M. D. et al. Evolution of spin excitations into the superconducting state in FeTe 1−x Se x . Nat. Phys. 6, 182–186 (2010).
64. Liu, T. et al. From (π, 0) magnetic order to superconductivity with (π, π) magnetic resonance in Fe 1.02 Te 1−x Sex. Nat. Mater. 9, 718–720 (2010).
65. Gastiasoro, M. N. & Andersen, B. M. Enhancement of magnetic stripe order in iron-pnictide superconductors from the interaction between conduction electrons and magnetic impurities. Phys. Rev. Lett. 113, 067002 (2014).
66. Pratt, D. K. et al. Incommensurate spin-density wave order in electron-doped BaFe 2 As 2 superconductors. Phys. Rev. Lett. 106, 257001 (2011).
67. Allred, J. M. et al. Double-Q spin-density wave in iron arsenide superconductors. Nat. Phys. 12, 493–498 (2016).
68. Lorenzana, J., Seibold, G., Ortix, C. & Grilli, M. Competing orders in FeAs layers. Phys. Rev. Lett. 101, 186402 (2008).
69. Fernandes, R. M., Kivelson, S. A. & Berg, E. Vestigial chiral and charge orders from bidirectional spin-density waves: application to the iron-based superconductors. Phys. Rev. B 93, 014511 (2016).
70. Meier, W. R. et al. Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor. npj Quantum Mater. 3, 5 (2018).
71. Si, Q. & Abrahams, E. Strong correlations and magnetic frustration in the high T c iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).
72. Seo, K., Bernevig, B. A. & Hu, J. Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).
73. Dai, P., Hu, J. & Dagotto, E. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nat. Phys. 8, 709–718 (2012).
74. Eremin, I. & Chubukov, A. V. Magnetic degeneracy and hidden metallicity of the spin-density-wave state in ferropnictides. Phys. Rev. B 81, 024511 (2010).
75. Fernandes, R. M. & Chubukov, A. V. Low-energy microscopic models for iron-based superconductors: a review. Rep. Prog. Phys. 80, 014503 (2016).
76. Yildirim, T. Origin of the 150-K anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural phase transition. Phys. Rev. Lett. 101, 057010 (2008).
77. Glasbrenner, J. et al. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys. 11, 953–958 (2015)
https://www.nature.com/articles/s41586-021-04073-2