A stellar stream remnant of a globular cluster below the metallicity floor

1.Frebel, A. & Norris, J. E. Near-field cosmology with extremely metal-poor stars. Ann. Rev. Astron. Astrophys. 53, 631–688 (2015).CAS  ADS  Google Scholar  2.Yong, D. et al. The most metal-poor stars. III. The metallicity distribution function and carbon-enhanced metal-poor fraction. Astrophys. J. 762, 27 (2013).ADS  Google Scholar  3.Li, H., Tan, K. & Zhao, G. A catalog of 10,000 very metal-poor stars from LAMOST DR3. Astrophys. J. Supp. 238, 16 (2018).ADS  Google Scholar  4.Aguado, D. S. et al. The Pristine survey – VI. The first three years of medium-resolution follow-up spectroscopy of Pristine EMP star candidates. Mon. Not. R. Astron. Soc. 490, 2241–2253 (2019).CAS  ADS  Google Scholar  5.Beasley, M. A. et al. An old, metal-poor globular cluster in Sextans A and the metallicity floor of globular cluster systems. Mon. Not. R. Astron. Soc. 487, 1986–1993 (2019).CAS  ADS  Google Scholar  6.Wan, Z. et al. The tidal remnant of an unusually metal-poor globular cluster. Nature 583, 768–770 (2020).CAS  ADS  PubMed  Google Scholar  7.Kruijssen, J. M. D. The minimum metallicity of globular clusters and its physical origin – implications for the galaxy mass-metallicity relation and observations of proto-globular clusters at high redshift. Mon. Not. R. Astron. Soc. 486, L20–L25 (2019).CAS  ADS  Google Scholar  8.Ibata, R. et al. Charting the Galactic acceleration field. I. A search for stellar streams with Gaia DR2 and EDR3 with follow-up from ESPaDOnS and UVES. Astrophys. J. 914, 123 (2021).CAS  ADS  Google Scholar  9.Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021). Google Scholar  10.Starkenburg, E. et al. The Pristine survey – I. Mining the Galaxy for the most metal-poor stars. Mon. Not. R. Astron. Soc. 471, 2587–2604 (2017).CAS  ADS  Google Scholar  11.Harris, W. E. A catalog of parameters for globular clusters in the Milky Way. Astron. J. 112, 1487 (1996).ADS  Google Scholar  12.Willman, B. & Strader, J. ‘Galaxy,’ defined. Astron. J. 144, 76 (2012).ADS  Google Scholar  13.Leaman, R. Insights into pre-enrichment of star clusters and self-enrichment of dwarf galaxies from their intrinsic metallicity dispersions. Astron. J. 144, 183 (2012).ADS  Google Scholar  14.Kirby, E. N. et al. The universal stellar mass-stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013).ADS  Google Scholar  15.Gratton, R. G., Carretta, E. & Bragaglia, A. Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron. Astrophys. R. 20, 50 (2012).ADS  Google Scholar  16.Bastian, N. & Lardo, C. Multiple stellar populations in globular clusters. Ann. Rev. Astron. Astrophys. 56, 83–136 (2018).CAS  ADS  Google Scholar  17.Ji, A. P. et al. The Southern Stellar Stream Spectroscopic Survey (S5): chemical abundances of seven stellar streams. Astron. J. 160, 181 (2020).CAS  ADS  Google Scholar  18.Roederer, I. U. Are there any stars lacking neutron-capture elements? Evidence from strontium and barium. Astron. J. 145, 26 (2013).ADS  Google Scholar  19.Côté, B. et al. Neutron star mergers might not be the only source of r-process elements in the Milky Way. Astrophys. J. 875, 106 (2019).ADS  Google Scholar  20.Ji, A. P., Frebel, A., Simon, J. D. & Chiti, A. Complete element abundances of nine stars in the r-process galaxy Reticulum II. Astrophys. J. 830, 93 (2016).ADS  Google Scholar  21.Hansen, T. T. et al. An r-process enhanced star in the dwarf galaxy Tucana III. Astrophys. J. 838, 44 (2017).ADS  Google Scholar  22.Roederer, I. U. Primordial r-process dispersion in metal-poor globular clusters. Astrophys. J. Lett. 732, L17 (2011).ADS  Google Scholar  23.Yoon, J. et al. Galactic archeology with the AEGIS survey: the evolution of carbon and iron in the Galactic halo. Astrophys. J. 861, 146 (2018).ADS  Google Scholar  24.Norris, J. E. et al. The most metal-poor stars. IV. The two populations with [Fe/H] < −3.0. Astrophys. J. 762, 28 (2013).ADS  Google Scholar  25.Youakim, K. et al. The Pristine survey – VIII. The metallicity distribution function of the Milky Way halo down to the extremely metal-poor regime. Mon. Not. R. Astron. Soc. 492, 4986–5002 (2020).CAS  ADS  Google Scholar  26.Roederer, I. U. & Gnedin, O. Y. High-resolution optical spectroscopy of stars in the Sylgr stellar stream. Astrophys. J. 883, 84 (2019).CAS  ADS  Google Scholar  27.Larsen, S. S., Romanowsky, A. J., Brodie, J. P. & Wasserman, A. An extremely metal-deficient globular cluster in the Andromeda galaxy. Science 370, 970–973 (2020).CAS  ADS  PubMed  Google Scholar  28.Bonaca, A., Hogg, D. W., Price-Whelan, A. M. & Conroy, C. The spur and the gap in GD-1: dynamical evidence for a dark substructure in the Milky Way halo. Astrophys. J. 880, 38 (2019).CAS  ADS  Google Scholar  29.Ibata, R. A., Lewis, G. F. & Martin, N. F. Feeling the pull: a study of natural galactic accelerometers. I. Photometry of the delicate stellar stream of the Palomar 5 globular cluster. Astrophys. J. 819, 1 (2016).ADS  Google Scholar  30.Erkal, D., Koposov, S. E. & Belokurov, V. A sharper view of Pal 5's tails: discovery of stream perturbations with a novel non-parametric technique. Mon. Not. R. Astron. Soc. 470, 60–84 (2017).CAS  ADS  Google Scholar  31.Ma, X. et al. The origin and evolution of the galaxy mass-metallicity relation. Mon. Not. R. Astron. Soc. 456, 2140–2156 (2016).CAS  ADS  Google Scholar  32.Kielty, C. L. et al. The Pristine survey – XII. Gemini-GRACES chemo-dynamical study of newly discovered extremely metal-poor stars in the Galaxy. Mon. Not. R. Astron. Soc. 506, 1438–1461 (2021).ADS  Google Scholar  33.Malhan, K., Ibata, R. A. & Martin, N. F. Ghostly tributaries to the Milky Way: charting the halo's stellar streams with the Gaia DR2 catalogue. Mon. Not. R. Astron. Soc. 481, 3442–3455 (2018).CAS  ADS  Google Scholar  34.Carlberg, R. G. Globular clusters in a cosmological N-body simulation. Astrophys. J. 861, 69 (2018).ADS  Google Scholar  35.Malhan, K., Ibata, R. A., Carlberg, R. G., Valluri, M. & Freese, K. Butterfly in a cocoon, understanding the origin and morphology of globular cluster streams: the case of GD-1. Astrophys. J. 881, 106 (2019).CAS  ADS  Google Scholar  36.Martin, N. F. et al. The Pristine survey – XVI. The metallicity of 21 stellar streams around the Milky Way detected with the STREAMFINDER in Gaia EDR3. Mon. Not. R. Astron. Soc submitted (2021).37.Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste stellar evolution code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).CAS  ADS  Google Scholar  38.Maraston, C. Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. Mon. Not. R. Astron. Soc. 362, 799–825 (2005).CAS  ADS  Google Scholar  39.Deason, A. J., Belokurov, V. & Evans, N. W. The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth. Mon. Not. R. Astron. Soc. 416, 2903–2915 (2011).ADS  Google Scholar  40.Lindegren, L. et al. Gaia Early Data Release 3. Parallax bias versus magnitude, colour, and position. Astron. Astrophys. 649, A4 (2021). Google Scholar  41.Ibata, R. A., Malhan, K., Martin, N. F. & Starkenburg, E. Phlegethon, a nearby 75-degree-long retrograde Stellar Stream. Astrophys. J. 865, 85 (2018).ADS  Google Scholar  42.Chene, A.-N. et al. in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9151 (eds. Navarro, R. et al.) 915147 (SPIE, 2014).43.Pazder, J., Fournier, P., Pawluczyk, R. & van Kooten, M. in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9151 (eds. Navarro, R. et al.) 915124 (SPIE, 2014).44.Martioli, E. et al. in Software and Cyberinfrastructure for Astronomy II Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8451 (eds. Radziwill, N. M. & Chiozzi, G.) 84512B (SPIE, 2012).45.Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525 (1998).ADS  Google Scholar  46.Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).ADS  Google Scholar  47.González Hernández, J. I. & Bonifacio, P. A new implementation of the infrared flux method using the 2MASS catalogue. Astron. Astrophys. 497, 497–509 (2009).ADS  Google Scholar  48.Mucciarelli, A., Bellazzini, M. & Massari, D. Exploiting the Gaia EDR3 photometry to derive stellar temperatures. Astron. Astrophys. (in the press).49.Mashonkina, L., Jablonka, P., Pakhomov, Y., Sitnova, T. & North, P. The formation of the Milky Way halo and its dwarf satellites; a NLTE-1D abundance analysis. I. Homogeneous set of atmospheric parameters. Astron. Astrophys. 604, A129 (2017).ADS  Google Scholar  50.Karovicova, I. et al. Fundamental stellar parameters of benchmark stars from CHARA interferometry. I. Metal-poor stars. Astron. Astrophys. 640, A25 (2020).CAS  Google Scholar  51.Giribaldi, R. E., da Silva, A. R., Smiljanic, R. & Cornejo Espinoza, D. TITANS metal-poor reference stars. I. Accurate effective temperatures and surface gravities for dwarfs and subgiants from 3D non-LTE H α profiles and Gaia parallaxes. Astron. Astrophys. 650, A194 (2021).CAS  Google Scholar  52.Kurucz, R. L. ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera. Mem. Soc. Astron. Ital. Suppl. 8, 14 (2005).ADS  Google Scholar  53.Sneden, C. A. Carbon and Nitrogen Abundances in Metal-Poor Stars. PhD thesis, Univ. of Texas at Austin (1973).54.Sobeck, J. S. et al. The abundances of neutron-capture species in the very metal-poor globular cluster M15: a uniform analysis of red giant branch and red horizontal branch stars. Astron. J. 141, 175 (2011).ADS  Google Scholar  55.Placco, V. M. et al. Linemake: an atomic and molecular line list generator. Res. Notes AAS 5, 92 (2021).ADS  Google Scholar  56.http://inspect-stars.net.57.http://nlte.mpia.de.58.Lind, K., Bergemann, M. & Asplund, M. Non-LTE line formation of Fe in late-type stars – II. 1D spectroscopic stellar parameters. Mon. Not. R. Astron. Soc. 427, 50–60 (2012).CAS  ADS  Google Scholar  59.Bergemann, M. & Cescutti, G. Chromium: NLTE abundances in metal-poor stars and nucleosynthesis in the Galaxy (2010).60.Bergemann, M., Lind, K., Collet, R., Magic, Z. & Asplund, M. Non-LTE line formation of Fe in late-type stars – I. Standard stars with 1D and model atmospheres. Mon. Not. R. Astron. Soc. 427, 27–49 (2012).CAS  ADS  Google Scholar  61.Mashonkina, L., Korn, A. J. & Przybilla, N. A non-LTE study of neutral and singly-ionized calcium in late-type stars. Astron. Astrophys. 461, 261–275 (2007).CAS  ADS  Google Scholar  62.Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47, 481–522 (2009).CAS  ADS  Google Scholar  63.Tody, D. in Astronomical Data Analysis Software and Systems II Astronomical Society of the Pacific Conference Series, Vol. 52 (eds. Hanisch, R. J. et al.) 173 (1993).64.Aguado, D. S., Allende Prieto, C., González Hernández, J. I., Rebolo, R. & Caffau, E. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy. Astron. Astrophys. 604, A9 (2017).ADS  Google Scholar  65.Aguado, D. S., González Hernández, J. I., Allende Prieto, C. & Rebolo, R. J0815+4729: a chemically primitive dwarf star in the galactic halo observed with Gran Telescopio Canarias. Astrophys. J. Lett. 852, L20 (2018).ADS  Google Scholar  66.Allende Prieto, C. et al. Deep SDSS optical spectroscopy of distant halo stars. I. Atmospheric parameters and stellar metallicity distribution. Astron. Astrophys. 568, A7 (2014). Google Scholar  67.Aguado, D. S., González Hernández, J. I., Allende Prieto, C. & Rebolo, R. WHT follow-up observations of extremely metal-poor stars identified from SDSS and LAMOST. Astron. Astrophys. 605, A40 (2017).ADS  Google Scholar  68.Koesterke, L., Allende Prieto, C. & Lambert, D. L. Center-to-limb variation of solar three-dimensional hydrodynamical simulations. Astrophys. J. 680, 764–773 (2008).ADS  Google Scholar  69.Boender, C. G. E., Rinnoy Kan, A. H. G., Timmer, G. T. & Stougie, L. A stochastic method for global optimization. Math. Program. 22, 125 (1982).MathSciNet  MATH  Google Scholar  70.Wenger, M. et al. The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Suppl. Ser. 143, 9–22 (2000).ADS  Google Scholar  71.Ochsenbein, F., Bauer, P. & Marcout, J. The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. Ser. 143, 23–32 (2000).ADS  Google Scholar  72.http://www.inasan.rssi.ru/~lima/pristine.Page 2 †When available the photometric metallicities from the Pristine survey are provided in this column. We note that, by construction10, the Pristine photometric metallicities do not go below ({[{rm{Fe}}/{rm{H}}]}_{{rm{Pristine}}}=-4.0) and that the lessened sensitivity of the Pristine narrowband in this regime means that although stars can be flagged to have ([{rm{Fe}}/{rm{H}}] -3.0). ‘HB’: candidate horizontal branch star. ‘Non-member’: considered a non-member on the basis of the Pristine metallicity (({[{rm{Fe}}/{rm{H}}]}_{{rm{Pristine}}} > -2.5)) and not used in the analysis.
https://www.nature.com/articles/s41586-021-04162-2