Country-level factors dynamics and ABO/Rh blood groups contribution to COVID-19 mortality

1.WHO cov-19 interactive timeline (accessed 19 April 2021); https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline2.JHU cov-19 map. (accessed 19 April 2021); https://coronavirus.jhu.edu/map.html3.OWID data on the coronavirus pandemic. https://ourworldindata.org/mortality-risk-covid4.Flint, S. & Tahrani, A. Covid-19 and obesity-lack of clarity, guidance, and implications for care. Lancet Diabetes Endocrinol. 8, 474–475 (2020).CAS  PubMed  PubMed Central  Google Scholar  5.Zhou, Y., Chi, J., Lv, W. & Wang, Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (covid-19). Diabetes Metab. Res. Rev. 37, e3377 (2021).CAS  PubMed  Google Scholar  6.Richardson, S. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with covid-19 in the new york city area. JAMA 323, 2052–2059 (2020).CAS  PubMed  PubMed Central  Google Scholar  7.Zaki, N., Alashwal, H. & Ibrahim, S. Association of hypertension, diabetes, stroke, cancer, kidney disease, and high-cholesterol with covid-19 disease severity and fatality: A systematic review. Diabetes Metab. Syndr. 14, 1133–1142 (2020).PubMed  PubMed Central  Google Scholar  8.Ji, Y., Ma, Z., Peppelenbosch, M. P. & Pan, Q. Potential association between covid-19 mortality and health-care resource availability. Lancet Glob. Health 8, e480 (2020).PubMed  PubMed Central  Google Scholar  9.Kenyon, C. Flattening-the-curve associated with reduced covid-19 case fatality rates- an ecological analysis of 65 countries. J. Infect. 81, e98–e99 (2020).CAS  PubMed  PubMed Central  Google Scholar  10.Dowd, J. B. et al. Demographic science aids in understanding the spread and fatality rates of covid-19. PNAS 117, 9696–9698 (2020).CAS  PubMed  PubMed Central  Google Scholar  11.Hou, Y. J. et al. Sars-cov-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429-446.e14 (2020).CAS  PubMed  PubMed Central  Google Scholar  12.Zhang, X. et al. Viral and host factors related to the clinical outcome of covid-19. Nature 583, 437–440 (2020).ADS  CAS  PubMed  Google Scholar  13.Di Maria, E., Latini, A., Borgiani, P. & Novelli, G. Genetic variants of the human host influencing the coronavirus-associated phenotypes (sars, mers and covid-19): Rapid systematic review and field synopsis. Human Genom. 14, 1–19 (2020). Google Scholar  14.Zeberg, H. & Pääbo, S. The major genetic risk factor for severe covid-19 is inherited from neanderthals. Nature 587, 610–612 (2020).ADS  CAS  PubMed  Google Scholar  15.Oksanen, A. et al. Month follow-up study on covid-19 mortality in 25 european countries. JMIR Public Health Surv. 6, e19218 (2020). Google Scholar  16.MacLean, O. A., Orton, R. J., Singer, J. B. & Robertson, D. L. No evidence for distinct types in the evolution of sars-cov-2. Virus Evol. 6, veaa034 (2020).PubMed  PubMed Central  Google Scholar  17.Halley, J. M., Vokou, D., Pappas, G. & Sainis, I. Sars-cov-2 mutational cascades and the risk of hyper-exponential growth. Microb. Pathog. 161, 105237 (2021).CAS  PubMed  PubMed Central  Google Scholar  18.Ellinghaus, D. et al. Genome wide association study of severe covid-19 with respiratory failure. N. Engl. J. Med. 283, 1522–34 (2020). Google Scholar  19.Pairo-Castineira, E. et al. Genetic mechanisms of critical illness in covid-19. Nature 591, 92–98 (2021).ADS  PubMed  Google Scholar  20.Guilger-Casagrande, M., de Barros, C. T., Antunes, V. A. N., de Araujo, D. R. & Lima, R. Perspectives and challenges in the fight against covid-19: The role of genetic variability. Front Cell Infect. Microbiol. 11, 598875 (2021).PubMed  PubMed Central  Google Scholar  21.Wickenhagen, A. et al. A prenylated dsrna sensor protects against severe covid-19. Science 374, eabj3624 (2021).CAS  PubMed  Google Scholar  22.Escobar, L. E., Molina-Cruz, A. & Barillas-Mury, C. Bcg vaccine protection from severe coronavirus disease 2019 (covid-19). PNAS 117, 17720–17726 (2020).CAS  PubMed  PubMed Central  Google Scholar  23.Fu, W. et al. Reconcile the debate over protective effects of bcg vaccine against covid-19. Sci. Rep. 11, 8356 (2021).CAS  PubMed  PubMed Central  Google Scholar  24.Chimoyi, L. et al. An ecological study to evaluate the association of bacillus calmette-guerin (bcg) vaccination on cases of sars-cov2 infection and mortality from covid-19. PLoS One 15, e0243707 (2020).CAS  PubMed  PubMed Central  Google Scholar  25.Li, W. X. Worldwide inverse correlation between bacille calmette-guérin (bcg) immunization and covid-19 mortality. Infection 49, 463–473 (2021).CAS  PubMed  Google Scholar  26.Bowe, B. et al. Ambient fine particulate matter air pollution and the risk of hospitalization among covid-19 positive individuals: Cohort study. Environ. Int. 154, 106564 (2021).CAS  PubMed  PubMed Central  Google Scholar  27.Travaglio, M. et al. Links between air pollution and covid-19 in england. Environ. Pollut. 268, 115859 (2021).CAS  PubMed  PubMed Central  Google Scholar  28.Cazzolla Gatti, R., Velichevskaya, A., Tateo, A., Amoroso, N. & Monaco, A. Machine learning reveals that prolonged exposure to air pollution is associated with sars-cov-2 mortality and infectivity in italy. Environ. Pollut. 267, 115471 (2020).CAS  PubMed  PubMed Central  Google Scholar  29.Cassan, G. & Van Steenvoort, M. Political regime and covid 19 death rate: Efficient, biasing or simply different autocracies? An econometric analysis. SSM Popul. Health 16, 100912 (2021).PubMed  PubMed Central  Google Scholar  30.Blood type distribution by country. (accessed 16 January 2021); https://en.wikipedia.org/wiki/Blood_type_distribution_by_country31.The complete our world in data covid-19 dataset. (accessed 16 January 2021); https://github.com/owid/covid-19-data/tree/master/public/data32.Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 13, 1063–1095 (2012).MathSciNet  MATH  Google Scholar  33.Kursa, M. B. & Rudnicki, W. R. Feature selection with the boruta package. J. Stat. Softw. 36, 1–13 (2010). Google Scholar  34.Kursa, M. B., Jankowski, A. & Rudnicki, W. R. Boruta: A system for feature selection. Fundam. Inform. 101, 271–285 (2010).MathSciNet  Google Scholar  35.Breiman, L. Random forests. Mach. Learn. 45, 32–45 (2001).MATH  Google Scholar  36.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.org/37.Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).MATH  Google Scholar  38.Shelton, J. F. et al. Trans-ethnic analysis reveals genetic and non-genetic associations with covid-19 susceptibility and severity. medRxiv (2020).39.Zhao, J. et al. Relationship between the abo blood group and the covid-19 susceptibility. Clin. Infect. Dis. 73, ciaa1150 (2020). Google Scholar  40.Wu, Y., Feng, Z. P. L. & Yu, Q. Relationship between the abo blood group and the covid-19 susceptibility. Clin. Chim. Acta 509, 220–3 (2020).CAS  PubMed  PubMed Central  Google Scholar  41.Ray, J. G., Schull, M. J., Vermeulen, M. J. & Park, A. L. Association between abo and rh blood groups and sars-cov-2 infection or severe covid-19 illness: A population-based cohort study. Ann. Int. Med. 174, 308–315 (2021).PubMed  Google Scholar  42.Zietz, M., Zucker, J. & Tatonetti, N. P. Associations between blood type and covid-19 infection, intubation, and death. Nat. Commun. 11, 5761 (2020).ADS  CAS  PubMed  PubMed Central  Google Scholar  43.HernandézCordero, A. I. E. A. Multi-omics highlights abo plasma protein as a causal risk factor for covid-19. Hum. Genet. 140, 969–979 (2021). Google Scholar  44.Valenti, L. et al. Association of abo blood group and secretor phenotype with severe covid-19. Transfusion 60, 3067–3070 (2020).CAS  PubMed  Google Scholar  45.Horowitz, J. E. et al. Genome-wide analysis in 756,646 individuals provides first genetic evidence that ace2 expression influences covid-19 risk and yields genetic risk scores predictive of severe disease. medRxiv [Preprint] (2021).46.Guillon, P. et al. Inhibition of the interaction between the sars-cov spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 18, 1085–1093 (2008).CAS  PubMed  Google Scholar  47.Deleers, M. et al. Covid-19 and blood groups: Abo antibody levels may also matter. Int. J. Infect Dis. 104, 242–249 (2021).CAS  PubMed  Google Scholar  48.Pendu, J. L., Breiman, A., Rocher, J., Dion, M. & Ruvoen-Clouet, N. Abo blood types and covid-19: Spurious, anecdotal, or truly important relationships? A reasoned review of available data. Viruses 13, 160 (2021).PubMed  PubMed Central  Google Scholar  49.Wu, B. B., Gu, D. Z., Yu, J. N., Yang, J. & Shen, W. Q. Association between abo blood groups and covid-19 infection, severity and demise: A systematic review and meta-analysis. Infect. Genet. Evol. 84, 104485 (2020).CAS  PubMed  PubMed Central  Google Scholar  50.Liu, Y., Haussinger, L., Steinacker, J. M. & Dinse-Lambracht, A. Association between the dynamics of the covid-19 epidemic and abo blood type distribution. Epidemiol. Infect. 149, e19 (2021).CAS  PubMed  Google Scholar  51.Ellis, P. J. I. Modelling suggests abo histo-incompatibility may substantially reduce sars-cov-2 transmission. Epidemics 35, 100446 (2021).PubMed  PubMed Central  Google Scholar  52.Miotto, M., Di Rienzo, L., Gosti, G., Milanetti, E. & Ruocco, G. Does blood type affect the covid-19 infection pattern?. PLoS One 16, e0251535 (2021).CAS  PubMed  PubMed Central  Google Scholar  53.Stowell, S. R. & Stowell, C. P. Biologic roles of the abh and lewis histo-blood group antigens part ii: Thrombosis, cardiovascular disease and metabolism. Vox Sang 114, 535–552 (2019).PubMed  Google Scholar  54.Trégouët, D. A. et al. Common susceptibility alleles are unlikely to contribute as strongly as the fv and abo loci to vte risk: Results from a gwas approach. Blood 113, 5298–303 (2009).PubMed  Google Scholar  55.Paré, G. et al. Novel association of abo histo-blood group antigen with soluble icam-1: Results of a genome wide association study of 6,578 women. PLoS Genet. 4, e1000118 (2008).PubMed  PubMed Central  Google Scholar  56.Frischmuth, T. et al. Joint effect of multiple prothrombotic genotypes and obesity on the risk of incident venous thromboembolism. Thromb Haemost. (2021).57.Skille, H. et al. Combined effects of five prothrombotic genotypes and cancer on the risk of a first venous thromboembolic event. J. Thromb Haemost. 18, 2861–2869 (2020).CAS  PubMed  Google Scholar  58.Sejrup, J. K. et al. Myocardial infarction, prothrombotic genotypes, and venous thrombosis risk: The tromsø study. Res. Pract. Thromb Haemost. 4, 247–254 (2020).CAS  PubMed  PubMed Central  Google Scholar  59.Groot, H. E. et al. Genetically determined abo blood group and its associations with health and disease. Arterioscler. Thromb Vasc. Biol. 40, 830–838 (2020).CAS  PubMed  Google Scholar  60.Sabater-Lleal, M. E. A. Genome-wide association transethnic meta-analyses identifies novel associations regulating coagulation factor viii and von willebrand factor plasma levels. Circulation 139, 620–635 (2019).CAS  PubMed  PubMed Central  Google Scholar  61.Timmann, C. et al. Genome-wide association study indicates two novel resistance loci for severe malaria. Nature 489, 443–446 (2012).ADS  CAS  PubMed  Google Scholar  62.Band, G. et al. Malaria genomic epidemiology network: Insights into malaria susceptibility using genome-wide data on 17,000 individuals from africa, asia and oceania. Nat. Commun. 10, 5732 (2019).ADS  Google Scholar  63.Heit, J. A. et al. A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q. J. Thromb. Haemostasis: JTH 10, 1521–1531 (2012).CAS  Google Scholar  64.Dahlén, T., Clements, M., Zhao, J., Olsson, M. L. & Edgren, G. An agnostic study of associations between abo and rhd blood group and phenome-wide disease risk. Elife 10, e65658 (2021).PubMed  PubMed Central  Google Scholar  65.Souilmi, Y. et al. An ancient viral epidemic involving host coronavirus interacting genes more than 20,000 years ago in east asia. bioRxiv (2021).66.Patella, V., Delfino, G., Bruzzese, D., Giuliano, A. & Sanduzzi, A. The bacillus calmette-guérin vaccination allows the innate immune system to provide protection from severe covid-19 infection. PNAS 117, 25205–25206 (2020).CAS  PubMed  PubMed Central  Google Scholar  67.Klinger, D., Blass, I., Rappoport, N. & Linial, M. Significantly improved covid-19 outcomes in countries with higher bcg vaccination coverage: A multivariable analysis. Vaccines 8, 523 (2020). Google Scholar  68.Brooks, N. A. E. A. The association of coronavirus disease-19 mortality and prior bacille calmette-guerin vaccination: A robust ecological analysis using unsupervised machine learning. Sci. Rep. 11, 1–9 (2021). Google Scholar  Page 2 Genetic features Demographic indicators Medical indicators Economic indicators Life style indicators O+ A+ B+ AB+ O− A− B− AB− O/non O Rh−/Rh+ Population density Life expectancy at birth GDP per capita Percentage of female smokers Median age of the population Cardiovascular death rate Total healthcare expenditure Percentage of male smokers Population aged 65 or older Diabetes prevalence Hospital beds per thousand inhabitants   Population aged 70 or older    We used five kinds of features: genetic, demographic, economic, medical, and life style indicators.
https://www.nature.com/articles/s41598-021-04162-2