1.Adetokun, B. B., Muriithi, C. M. & Ojo, J. O. Voltage stability assessment and enhancement of power grid with increasing wind energy penetration. Int. J. Electr. Power Energy Syst. 120, 105988 (2020). Google Scholar 2.Shah, R., Mithulananthan, N., Bansal, R. C. & Ramachandaramurthy, V. K. A review of key power system stability challenges for large-scale PV integration. Renew. Sustain. Energy Rev. 41, 1423–1436 (2015). Google Scholar 3.Sharif, A., Raza, S. A., Ozturk, I. & Afshan, S. The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations. Renew. Energy 133, 685–691 (2019). Google Scholar 4.Ayodele, T. R., Ogunjuyigbe, A. S. O. & Adetokun, B. B. Optimal capacitance selection for a wind-driven self-excited reluctance generator under varying wind speed and load conditions. Appl. Energy 190, 339–353 (2017). Google Scholar 5.Ogunjuyigbe, A. S. O., Ayodele, T. R. & Adetokun, B. B. Steady state analysis of wind-driven self-excited reluctance generator for isolated applications. Renew. Energy 114, 984–1004 (2017). Google Scholar 6.Adetokun, B. B., Muriithi, C. M. & Ojo, J. O. Voltage stability analysis and improvement of power system with increased SCIG-based wind system integration. In IEEE PES/IAS PowerAfrica, vol. 2020, 1–5 (2020).7.Adetokun, B. B. & Muriithi, C. M. Application and control of flexible alternating current transmission system devices for voltage stability enhancement of renewable-integrated power grid: A comprehensive review. Heliyon 7(3), e06461 (2021).PubMed PubMed Central Google Scholar 8.GWEC. Global Wind Report 2019. Available: https://gwec.net/global-wind-report-2019/ (Global Wind Energy Council, 2020).9.Nwaigwe, K. N., Mutabilwa, P. & Dintwa, E. An overview of solar power (PV systems) integration into electricity grids. Mater. Sci. Energy Technol. 2(3), 629–633 (2019). Google Scholar 10.Othman, M. M., Ahmed, H. M. A., Ahmed, M. H. & Salama, M. M. A. A techno-economic approach for increasing the connectivity of photovoltaic distributed generators. IEEE Trans. Sustain. Energy 11(3), 1848–1857 (2020).ADS Google Scholar 11.Alanazi, M., Mahoor, M. & Khodaei, A. Co-optimization generation and transmission planning for maximizing large-scale solar PV integration. Int. J. Electr. Power Energy Syst. 118, 105723 (2020). Google Scholar 12.Su, Y., Chan, L.-C., Shu, L. & Tsui, K.-L. Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems. Appl. Energy 93, 319–326 (2012). Google Scholar 13.Aourir, M. et al. Nonlinear control and stability analysis of single stage grid-connected photovoltaic systems. Int. J. Electr. Power Energy Syst. 115, 105439 (2020). Google Scholar 14.Almeida, D. et al. Generalized approach to assess and characterise the impact of solar PV on LV networks. Int. J. Electr. Power Energy Syst. 121, 106058 (2020). Google Scholar 15.Wang, Q. et al. Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers. Appl. Energy 259, 114132 (2020). Google Scholar 16.Wang, G., Xin, H., Wu, D. & Ju, P. Data-driven probabilistic small signal stability analysis for grid-connected PV systems. Int. J. Electr. Power Energy Syst. 113, 824–831 (2019). Google Scholar 17.Munkhchuluun, E., Meegahapola, L. & Vahidnia, A. Long-term voltage stability with large-scale solar-photovoltaic (PV) generation. Int. J. Electr. Power Energy Syst. 117, 105663 (2020). Google Scholar 18.Adewuyi, O. B. et al. Security-constrained optimal utility-scale solar PV investment planning for weak grids: Short reviews and techno-economic analysis. Appl. Energy 245, 16–30 (2019). Google Scholar 19.Morjaria, M., Anichkov, D., Chadliev, V. & Soni, S. A grid-friendly plant: The role of utility-scale photovoltaic plants in grid stability and reliability. IEEE Power Energy Mag. 12(3), 87–95 (2014). Google Scholar 20.Eftekharnejad, S., Vittal, V., Heydt, G. T., Keel, B. & Loehr, J. Small signal stability assessment of power systems with increased penetration of photovoltaic generation: A case study. IEEE Trans. Sustain. Energy 4(4), 960–967 (2013).ADS Google Scholar 21.Refaat, S. S., Abu-Rub, H., Sanfilippo, A. P. & Mohamed, A. Impact of grid-tied large-scale photovoltaic system on dynamic voltage stability of electric power grids. IET Renew. Power Gener. 12(2), 157–164 (2018). Google Scholar 22.Mensah, L. D., Yamoah, J. O. & Adaramola, M. S. Performance evaluation of a utility-scale grid-tied solar photovoltaic (PV) installation in Ghana. Energy Sustain. Dev. 48, 82–87 (2019). Google Scholar 23.de Lima, L. C., de Araújo Ferreira, L. & de Lima Morais, F. H. B. Performance analysis of a grid connected photovoltaic system in northeastern Brazil. Energy Sustain. Dev. 37, 79–85 (2017). Google Scholar 24.Komiyama, R. & Fujii, Y. Optimal integration assessment of solar PV in Japan’s electric power grid. Renew. Energy 139, 1012–1028 (2019). Google Scholar 25.Aziz, A. S., Tajuddin, M. F. N., Adzman, M. R., Mohammed, M. F. & Ramli, M. A. M. Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq. Energy 191, 116591 (2020). Google Scholar 26.Pietruszko, S. M. & Gradzki, M. Performance of a grid connected small PV system in Poland. Appl. Energy 74(1), 177–184 (2003). Google Scholar 27.Zou, H., Du, H., Brown, M. A. & Mao, G. Large-scale PV power generation in China: A grid parity and techno-economic analysis. Energy 134, 256–268 (2017). Google Scholar 28.Boddapati, V. & Daniel, S. A. Performance analysis and investigations of grid-connected Solar Power Park in Kurnool, South India. Energy Sustain. Dev. 55, 161–169 (2020). Google Scholar 29.Thotakura, S. et al. Operational performance of megawatt-scale grid integrated rooftop solar PV system in tropical wet and dry climates of India. Case Stud. Therm. Eng. 18, 100 (2020). Google Scholar 30.Bhattacharyya, S. C., Palit, D., Sarangi, G. K., Srivastava, V. & Sharma, P. Solar PV mini-grids versus large-scale embedded PV generation: A case study of Uttar Pradesh (India). Energy Policy 128, 36–44 (2019). Google Scholar 31.Kumar, M., Chandel, S. S. & Kumar, A. Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions. Energy 204, 117903 (2020). Google Scholar 32.Malvoni, M., Kumar, N. M., Chopra, S. S. & Hatziargyriou, N. Performance and degradation assessment of large-scale grid-connected solar photovoltaic power plant in tropical semi-arid environment of India. Sol. Energy 203, 101–113 (2020).ADS Google Scholar 33.Rose, A., Stoner, R. & Pérez-Arriaga, I. Prospects for grid-connected solar PV in Kenya: A systems approach. Appl. Energy 161, 583–590 (2016). Google Scholar 34.Li, D. H. W., Cheung, K. L., Lam, T. N. T. & Chan, W. W. H. A study of grid-connected photovoltaic (PV) system in Hong Kong. Appl. Energy 90(1), 122–127 (2012). Google Scholar 35.Sabo, M. L., Mariun, N., Hizam, H., Mohd Radzi, M. A. & Zakaria, A. Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia. Appl. Energy 191, 663–688 (2017). Google Scholar 36.Papageorgiou, A., Ashok, A., Hashemi Farzad, T. & Sundberg, C. Climate change impact of integrating a solar microgrid system into the Swedish electricity grid. Appl. Energy 268, 114981 (2020). Google Scholar 37.Sultan, H. M., Diab, A. A. Z., Kuznetsov, O. N., Ali, Z. M. & Abdalla, O. Evaluation of the impact of high penetration levels of PV power plants on the capacity, frequency and voltage stability of Egypt’s unified grid. Energies 12(3), 552 (2019). Google Scholar 38.Feilat, E. A., Azzam, S. & Al-Salaymeh, A. Impact of large PV and wind power plants on voltage and frequency stability of Jordan’s national grid. Sustain. Cities Soc. 36, 257–271 (2018). Google Scholar 39.Tamimi, B., Cañizares, C. & Bhattacharya, K. System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada. IEEE Trans. Sustain. Energy 4(3), 680–688 (2013).ADS Google Scholar 40.Esteban, M. et al. 100% renewable energy system in Japan: Smoothening and ancillary services. Appl. Energy 224, 698–707 (2018). Google Scholar 41.Yan, R., Saha, T. K., Modi, N., Masood, N.-A. & Mosadeghy, M. The combined effects of high penetration of wind and PV on power system frequency response. Appl. Energy 145, 320–330 (2015). Google Scholar 42.Johnson, S. C., Rhodes, J. D. & Webber, M. E. Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways. Appl. Energy 262, 114492 (2020). Google Scholar 43.Abdullahi, D., Suresh, S., Renukappa, S. & Oloke, D. Key barriers to the implementation of solar energy in Nigeria: A critical analysis. IOP Conf. Ser. Earth Environ. Sci. 83, 012015 (2017). Google Scholar 44.Eni, R. O. & Akinbami, J. K. Flexibility evaluation of integrating solar power into the Nigerian electricity grid. IET Renew. Power Gener. 11(2), 239–247 (2017). Google Scholar 45.Adaramola, M. S. Viability of grid-connected solar PV energy system in Jos, Nigeria. Int. J. Electr. Power Energy Syst. 61, 64–69 (2014). Google Scholar 46.Adewuyi, O. B., Shigenobu, R., Senjyu, T., Lotfy, M. E. & Howlader, A. M. Multiobjective mix generation planning considering utility-scale solar PV system and voltage stability: Nigerian case study. Electr. Power Syst. Res. 168, 269–282 (2019). Google Scholar 47.Adaramola, M. S., Paul, S. S. & Oyewola, O. M. Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria. Energy Sustain. Dev. 19, 72–82 (2014). Google Scholar 48.Adeoye, O. & Spataru, C. Sustainable development of the West African Power Pool: Increasing solar energy integration and regional electricity trade. Energy Sustain. Dev. 45, 124–134 (2018). Google Scholar 49.Owolabi, A. B., Nsafon, B. E. K., Roh, J. W., Suh, D. & Huh, J.-S. Validating the techno-economic and environmental sustainability of solar PV technology in Nigeria using RETScreen Experts to assess its viability. Sustain. Energy Technol. Assess. 36, 100542 (2019). Google Scholar 50.Adetokun, B. B., Ojo, J. O. & Muriithi, C. M. Reactive power-voltage-based voltage instability sensitivity indices for power grid with increasing renewable energy penetration. IEEE Access 8, 85401–85410 (2020). Google Scholar 51.Adetokun, B. B. & Muriithi, C. M. Impact of integrating large-scale DFIG-based wind energy conversion system on the voltage stability of weak national grids: A case study of the Nigerian power grid. Energy Rep. 7, 654–666 (2021). Google Scholar 52.FICHTNER. Transmission Expansion Plan Development of Power System Master Plan for the Transmission Company of Nigeria. 8328P01/FICHT-19579512-v1 (2017).53.Nextier-Power. Nigeria Electricity Market Intelligence Report_Q2 (2019).54.NERC. Nigerian Electricity Regulatory Commission Quarterly Report: Second Quarter (2019).55.Zhang, H. L., Baeyens, J., Degrève, J. & Cacères, G. Concentrated solar power plants: Review and design methodology. Renew. Sustain. Energy Rev. 22, 466–481 (2013). Google Scholar 56.Akwukwaegbu, I. O., Nosiri, O. C. & Ezugwu, E. O. Voltage stability investigation of the Nigeria 330KV interconnected grid system using eigenvalues method. American Journal of Engineering Research 6(4), 168–182 (2017). Google Scholar Page 2 Scientific Reports (Sci Rep) ISSN 2045-2322 (online)
https://www.nature.com/articles/s41598-021-04300-w
Application of large-scale grid-connected solar photovoltaic system for voltage stability improvement of weak national grids
