Dosage sensitivity and exon shuffling shape the landscape of polymorphic duplicates in Drosophila and humans

1. Ohno, S. Evolution by Gene Duplication (Springer, 1970).

2. Zhang, J. Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292–298 (2003).

3. VanKuren, N. W. & Long, M. Gene duplicates resolving sexual conflict rapidly evolved essential gametogenesis functions. Nat. Ecol. Evol. 2, 705–712 (2018).

4. Brooke, N. M., Garcia-Fernàndez, J. & Holland, P. W. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392, 920–922 (1998).

5. Bridges, C. B. Salivary chromosome maps with a key to the banding of the chromosomes of Drosophila melanogaster. J. Hered. 26, 60–64 (1935).

6. Hahn, M. W. Distinguishing among evolutionary models for the maintenance of gene duplicates. J. Hered. 100, 605–617 (2009).

7. Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97–108 (2010).

8. Kondrashov, F. A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. R. Soc. B https://doi.org/10.1098/rspb.2012.1108 (2012).

9. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531 (1999).

10. Holland, P. W., Marlétaz, F., Maeso, I., Dunwell, T. L. & Paps, J. New genes from old: asymmetric divergence of gene duplicates and the evolution of development. Phil. Trans. R. Soc. B 372, 20150480 (2017).

11. Rice, A. M. & McLysaght, A. Dosage-sensitive genes in evolution and disease. BMC Biol. 15, 78 (2017).

12. Giorgianni, M. W. et al. The origin and diversification of a novel protein family in venomous snakes. Proc. Natl Acad. Sci. USA 117, 10911–10920 (2020).

13. Guruharsha, K. G. et al. A protein complex network of Drosophila melanogaster. Cell 147, 690–703 (2011).

14. Birchler, J. A. & Veitia, R. A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl Acad. Sci. USA 109, 14746–14753 (2012).

15. Qian, W., Liao, B.-Y., Chang, A. Y.-F. & Zhang, J. Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet. 26, 425–430 (2010).

16. Lan, X. & Pritchard, J. K. Coregulation of tandem duplicate genes slows evolution of subfunctionalization in mammals. Science 352, 1009–1013 (2016).

17. Chang, A. Y.-F. & Liao, B.-Y. Recruitment of histone modifications to assist mRNA dosage maintenance after degeneration of cytosine DNA methylation during animal evolution. Genome Res 27, 1513–1524 (2017).

18. Sangrithi, M. N. et al. Non-canonical and sexually dimorphic X dosage compensation states in the mouse and human germline. Dev. Cell 40, 289–301 (2017).

19. Lucchesi, J. C. & Kuroda, M. I. Dosage compensation in Drosophila. Cold Spring Harb. Perspect. Biol. 7, a019398 (2015).

20. Emerson, J. J., Cardoso-Moreira, M., Borevitz, J. O. & Long, M. Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320, 1629–1631 (2008).

21. Dougherty, M. L. et al. Transcriptional fates of human-specific segmental duplications in brain. Genome Res 28, 1566–1576 (2018).

22. Rogers, R. L. & Hartl, D. L. Chimeric genes as a source of rapid evolution in Drosophila melanogaster. Mol. Biol. Evol. 29, 517–529 (2012).

23. Williford, A. & Betrán, E. Gene Fusion (eLS, 2013); https://doi.org/10.1002/9780470015902.a0005099.pub3

24. Kondrashov, F. A. & Koonin, E. V. Origin of alternative splicing by tandem exon duplication. Hum. Mol. Genet. 10, 2661–2669 (2001).

25. Letunic, I., Copley, R. R. & Bork, P. Common exon duplication in animals and its role in alternative splicing. Hum. Mol. Genet. 11, 1561–1567 (2002).

26. Gao, X. & Lynch, M. Ubiquitous internal gene duplication and intron creation in eukaryotes. Proc. Natl Acad. Sci. USA 106, 20818–20823 (2009).

27. Gilbert, W. Why genes in pieces. Nature 271, 501 (1978).

28. Gilbert, W. & Long, M. Walter Gilbert: Selected Works (World Scientific Publishing Company, 2020).

29. Irimia, M. & Roy, S. W. Origin of spliceosomal introns and alternative splicing. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a016071 (2014).

30. Keren, H., Lev-Maor, G. & Ast, G. Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11, 345–355 (2010).

31. Smithers, B., Oates, M. & Gough, J. ‘Why genes in pieces?’—revisited. Nucleic Acids Res. 47, 4970–4973 (2019).

32. Roy, S. W. & Gilbert, W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat. Rev. Genet. 7, 211–221 (2006).

33. Liu, M. & Grigoriev, A. Protein domains correlate strongly with exons in multiple eukaryotic genomes—evidence of exon shuffling? Trends Genet. 20, 399–403 (2004).

34. Patthy, L. Genome evolution and the evolution of exon-shuffling—a review. Gene 238, 103–114 (1999).

35. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

36. Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Genet. 49, 692 (2017).

37. Tuke, M. et al. Large copy-number variants in UK Biobank caused by clonal hematopoiesis may confound penetrance estimates. Am. J. Hum. Genet. 107, 325–329 (2020).

38. Carvalho, C. M. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17, 224 (2016).

39. Sudmant, P. H. et al. Evolution and diversity of copy number variation in the great ape lineage. Genome Res. 23, 1373–1382 (2013).

40. Schrider, D. R., Hahn, M. W. & Begun, D. J. Parallel evolution of copy-number variation across continents in Drosophila melanogaster. Mol. Biol. Evol. 33, 1308–1316 (2016).

41. Newman, S., Hermetz, K. E., Weckselblatt, B. & Rudd, M. K. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am. J. Hum. Genet. 96, 208–220 (2015).

42. Cardoso-Moreira, M. et al. Evidence for the fixation of gene duplications by positive selection in Drosophila. Genome Res. 26, 787–798 (2016).

43. Rogers, R. L., Shao, L. & Thornton, K. R. Tandem duplications lead to novel expression patterns through exon shuffling in Drosophila yakuba. PLoS Genet. 13, e1006795 (2017).

44. Konrad, A. et al. Mutational and transcriptional landscape of spontaneous gene duplications and deletions in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 115, 7386–7391 (2018).

45. Graur, D. & Li, W. H. Fundamentals of Molecular Evolution (Sinauer, 2000).

46. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

47. Sakharkar, M. K., Perumal, B. S., Sakharkar, K. R. & Kangueane, P. An analysis on gene architecture in human and mouse genomes. In Silico Biol. 5, 347–365 (2005).

48. Deutsch, M. & Long, M. Intron–exon structures of eukaryotic model organisms. Nucleic Acids Res. 27, 3219–3228 (1999).

49. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet 21, 597–614 (2020).

50. Ranz, J. & Clifton, B. Characterization and evolutionary dynamics of complex regions in eukaryotic genomes. Sci. China Life Sci. 62, 467–488 (2019).

51. Mackay, T. F. et al. The Drosophila melanogaster genetic reference panel. Nature 482, 173–178 (2012).

52. Zichner, T. et al. Impact of genomic structural variation in Drosophila melanogaster based on population-scale sequencing. Genome Res. https://doi.org/10.1101/gr.142646.112 (2013).

53. Huang, W. et al. Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res. 24, 1193–1208 (2014).

54. Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677 (2009).

55. Ye, K., Schulz, M. H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

56. Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011).

57. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

58. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).

59. Ardlie, K. G. et al. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

60. Katju, V. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. Int. J. Evol. Biol. 2012, 341932 (2012).

61. Zhang, W. Y., Landback, P., Gschwend, A. R., Shen, B. R. & Long, M. Y. New genes drive the evolution of gene interaction networks in the human and mouse genomes. Genome Biol 16, 202 (2015).

62. Loehlin, D. W. & Carroll, S. B. Expression of tandem gene duplicates is often greater than twofold. Proc. Natl Acad. Sci. USA 113, 5988–5992 (2016).

63. Stark, A. et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450, 219–232 (2007).

64. Alekseyenko, A. A. et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134, 599–609 (2008).

65. Bachtrog, D., Toda, N. R. & Lockton, S. Dosage compensation and demasculinization of X chromosomes in Drosophila. Curr. Biol. 20, 1476–1481 (2010).

66. Pandey, R. S., Wilson Sayres, M. A. & Azad, R. K. Detecting evolutionary strata on the human X chromosome in the absence of gametologous Y-linked sequences. Genome Biol. Evol. 5, 1863–1871 (2013).

67. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

68. Berletch, J. B., Yang, F., Xu, J., Carrel, L. & Disteche, C. M. Genes that escape from X inactivation. Hum. Genet. 130, 237–245 (2011).

69. Shvetsova, E. et al. Skewed X-inactivation is common in the general female population. Eur. J. Hum. Genet. 27, 455–465 (2019).

70. Ji, J. et al. Copy number gain of VCX, X-linked multi-copy gene, leads to cell proliferation and apoptosis during spermatogenesis. Oncotarget 7, 78532–78540 (2016).

71. Zhang, Y., Liu, X. S., Liu, Q. R. & Wei, L. P. Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res. 34, 3465–3475 (2006).

72. Clark, M. B. et al. The reality of pervasive transcription. PLoS Biol. 9, e1000625 (2011).

73. Pertea, M. et al. CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise. Genome Biol 19, 208 (2018).

74. Long, M. & Langley, C. H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95 (1993).

75. Amrani, N., Sachs, M. S. & Jacobson, A. Early nonsense: mRNA decay solves a translational problem. Nat. Rev. Mol. Cell Biol. 7, 415–425 (2006).

76. Baker, E. P. & Hittinger, C. T. Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function. PLoS Genet. https://doi.org/10.1371/journal.pgen.1007786 (2019).

77. Cooper, G. M., Nickerson, D. A. & Eichler, E. E. Mutational and selective effects on copy-number variants in the human genome. Nat. Genet. 39, S22–S29 (2007).

78. Rigau, M., Juan, D., Valencia, A. & Rico, D. Intronic CNVs and gene expression variation in human populations. PLoS Genet. 15, e1007902 (2019).

79. Lynch, M. The Origins of Genome Architecture (Sinauer Associates, 2007).

80. Walsh, J. B. How often do duplicated genes evolve new functions? Genetics 139, 421–428 (1995).

81. Long, M. Y., VanKuren, N. W., Chen, S. D. & Vibranovski, M. D. New gene evolution: little did we know. Annu. Rev. Genet. 47, 307–333 (2013).

82. Rosenberg, S. M. & Queitsch, C. Combating evolution to fight disease. Science 343, 1088–1089 (2014).

83. Richardson, M. F. et al. Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster. PLoS Genet. 8, e1003129 (2012).

84. Mu, J. C. et al. Fast and accurate read alignment for resequencing. Bioinformatics 28, 2366–2373 (2012).

85. Clifton, B. D. et al. Understanding the early evolutionary stages of a tandem Drosophila melanogaster-specific gene family: a structural and functional population study. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msaa109 (2020).

86. Rhead, B. et al. The UCSC Genome Browser database: update 2010. Nucleic Acids Res. 38, D613–D619 (2010).

87. Cardoso-Moreira, M., Emerson, J. J., Clark, A. G. & Long, M. Drosophila duplication hotspots are associated with late-replicating regions of the genome. PLoS Genet. 7, e1002340 (2011).

88. Rogers, R. L. et al. Landscape of standing variation for tandem duplications in Drosophila yakuba and Drosophila simulans. Mol. Biol. Evol. 31, 1750–1766 (2014).

89. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363 (2011).

90. Manuel Rodriguez, J. et al. APPRIS: annotation of principal and alternative splice isoforms. Nucleic Acids Res. 41, D110–D117 (2013).

91. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

92. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33 (2013).

93. Cingolani, P. et al. A program for annotating and pred
https://www.nature.com/articles/s41559-021-01614-w