Accelerated mass loss of Himalayan glaciers since the Little Ice Age

1.Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328(5984), 1382–1385 (2010).ADS  CAS  PubMed  Google Scholar  2.Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577(7790), 364–369 (2020).CAS  PubMed  Google Scholar  3.Bolch, T. et al. The state and fate of Himalayan glaciers. Science 336(6079), 310–314 (2012).ADS  CAS  PubMed  Google Scholar  4.Gardelle, J., Berthier, E., Arnaud, Y. & Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7(4), 1263–1286 (2013).ADS  Google Scholar  5.Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10(9), 668–673 (2017).ADS  CAS  PubMed  PubMed Central  Google Scholar  6.Pritchard, H. D. Asia’s glaciers are a regionally important buffer against drought. Nature 545(7653), 169–174 (2017).ADS  CAS  PubMed  Google Scholar  7.King, O., Bhattacharya, A., Bhambri, R. & Bolch, T. Glacial lakes exacerbate Himalayan glacier mass loss. Sci. Rep. 9(1), 18145 (2019).ADS  PubMed  PubMed Central  Google Scholar  8.Maurer, J. M., Schaefer, J. M., Rupper, S. & Corley, A. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 5(6), eaav7266 (2019).ADS  CAS  PubMed  PubMed Central  Google Scholar  9.Owen, L. A. Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quatern. Sci. Rev. 28(21), 2150–2164 (2009).ADS  Google Scholar  10.McGrath, D., Sass, L., O’Neel, S., Arendt, A. & Kienholz, C. Hypsometric control on glacier mass balance sensitivity in Alaska and northwest Canada. Earth’s Future 5(3), 324–336 (2017).ADS  Google Scholar  11.Benn, D. I. & Owen, L. A. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: Review and speculative discussion. J. Geol. Soc. 155(2), 353–363 (1998).ADS  Google Scholar  12.Mölg, T., Maussion, F. & Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Change. 4(1), 68–73 (2014).ADS  Google Scholar  13.Rowan, A. V. The ‘Little Ice Age’ in the Himalaya: A review of glacier advance driven by Northern Hemisphere temperature change. Holocene 27(2), 292–308 (2017).ADS  Google Scholar  14.Rowan, A. V., Egholm, D. L., Quincey, D. J. & Glasser, N. F. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya. Earth Planet. Sci. Lett. 430, 427–438 (2015).ADS  CAS  Google Scholar  15.Sutherland, J. L. et al. Proglacial lakes control glacier geometry and behavior during recession. Geophys. Res. Lett. 47(19), e2020GL088865 (2020).ADS  Google Scholar  16.King, O., Dehecq, A., Quincey, D. & Carrivick, J. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Glob. Planet. Change 167, 46–60 (2018).ADS  Google Scholar  17.Pellicciotti, F. et al. Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. J. Glaciol. 61(226), 373–386 (2015).ADS  Google Scholar  18.Brun, F. et al. Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya. Cryosphere 12(11), 3439–3457 (2018).ADS  Google Scholar  19.Farinotti, D. et al. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 8(9), 716–722 (2015).ADS  CAS  Google Scholar  20.RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space. Colorado, USA (2017).21.Peng, X. et al. Late Holocene glacier fluctuations in the Bhutanese Himalaya. Glob. Planet. Change 187, 103137 (2020). Google Scholar  22.Oerlemans, J. & Fortuin, J. P. F. Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258(5079), 115–117 (1992).ADS  CAS  PubMed  Google Scholar  23.Fujita, K. Influence of precipitation seasonality on glacier mass balance and its sensitivity to climate change. Ann. Glaciol. 48, 88–92 (2008).ADS  CAS  Google Scholar  24.Krusic, P. J. et al. Six hundred thirty-eight years of summer temperature variability over the Bhutanese Himalaya. Geophys. Res. Lett. 42(8), 2988–2994 (2015).ADS  Google Scholar  25.Salerno, F. et al. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosphere 9(3), 1229–1247 (2015).ADS  Google Scholar  26.Shekhar, M. et al. Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci. Rep. 7(1), 10305 (2017).ADS  PubMed  PubMed Central  Google Scholar  27.Dehecq, A. et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 12(1), 22–27 (2019).ADS  CAS  Google Scholar  28.Østrem, G. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr. Ann. 41(4), 228–230 (1959). Google Scholar  29.Kayastha, R. B., Takeuchi, Y., Nakawo, M. & Ageta, Y. Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor. Int. Assoc. Hydrol. Sci. Publ. 264, 71–81 (2000). Google Scholar  30.Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412), 495–498 (2012).ADS  PubMed  Google Scholar  31.Lovell, A. M., Carr, J. R. & Stokes, C. R. Spatially variable glacier changes in the annapurna conservation area, Nepal, 2000 to 2016. Remote Sens. 11(12), 1452 (2019).ADS  Google Scholar  32.Watson, C. S., Quincey, D. J., Carrivick, J. L. & Smith, M. W. Ice cliff dynamics in the Everest region of the Central Himalaya. Geomorphology 278, 238–251 (2017).ADS  Google Scholar  33.Rowan, A. V. et al. The role of differential ablation and dynamic detachment in driving accelerating mass loss from a debris-covered Himalayan glacier. J. Geophys. Res. Earth Surf. 126, e2020JF005761 (2021).ADS  Google Scholar  34.Scherler, D., Bookhagen, B. & Strecker, M. R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 4(3), 156–159 (2011).ADS  CAS  Google Scholar  35.Anderson, L. S. & Anderson, R. S. Modeling debris-covered glaciers: Response to steady debris deposition. Cryosphere 10(3), 1105–1124 (2016).ADS  Google Scholar  36.Tsutaki, S. et al. Contrasting thinning patterns between lake- and land-terminating glaciers in the Bhutanese Himalaya. Cryosphere 13(10), 2733–2750 (2019).ADS  Google Scholar  37.Carrivick, J. L. & Tweed, F. S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Change 144, 1–16 (2016).ADS  Google Scholar  38.Carrivick, J. L., Tweed, F. S., Sutherland, J. L. & Mallalieu, J. Toward numerical modeling of interactions between ice-marginal proglacial lakes and glaciers. Front. Earth Sci. 8, 500 (2020).ADS  Google Scholar  39.Linsbauer, A. et al. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region. Ann. Glaciol. 51(71), 119–130 (2016).ADS  Google Scholar  40.Kääb, A., Treichler, D., Nuth, C. & Berthier, E. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 9(2), 557–564 (2015).ADS  Google Scholar  41.Shean, D. E. et al. A systematic, regional assessment of high mountain asia glacier mass balance. Front. Earth Sci. 7, 363 (2020).ADS  Google Scholar  42.Hannesdóttir, H., Björnsson, H., Pálsson, F., Aðalgeirsdóttir, G. & Guðmundsson, S. Changes in the southeast Vatnajökull ice cap, Iceland, between ~ 1890 and 2010. Cryosphere 9(2), 565–585 (2015).ADS  Google Scholar  43.Carrivick, J. L. et al. Accelerated volume loss in glacier ablation zones of NE Greenland, Little Ice Age to present. Geophys. Res. Lett. 46(3), 1476–1484 (2019).ADS  Google Scholar  44.Glasser, N. F., Harrison, S., Jansson, K. N., Anderson, K. & Cowley, A. Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nat. Geosci. 4(5), 303–307 (2011).ADS  CAS  Google Scholar  45.Davies, B. J. & Glasser, N. F. Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (~AD 1870) to 2011. J. Glaciol. 58(212), 1063–1084 (2012).ADS  Google Scholar  46.Carrivick, J. L., James, W. H. M., Grimes, M., Sutherland, J. L. & Lorrey, A. M. Ice thickness and volume changes across the Southern Alps, New Zealand, from the little ice age to present. Sci. Rep. 10(1), 13392 (2020).ADS  CAS  PubMed  PubMed Central  Google Scholar  47.Brun, F. et al. Heterogeneous influence of glacier morphology on the mass balance variability in high mountain Asia. J. Geophys. Res. Earth Surf. 124(6), 1331–1345 (2019).ADS  Google Scholar  48.Khan, S. A. et al. Centennial response of Greenland’s three largest outlet glaciers. Nat. Commun. 11(1), 5718 (2020).ADS  CAS  PubMed  PubMed Central  Google Scholar  49.Pellitero, R. et al. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Comput. Geosci. 82, 55–62 (2015). Google Scholar  50.Rea, B. R. Defining modern day Area-Altitude Balance Ratios (AABRs) and their use in glacier-climate reconstructions. Quatern. Sci. Rev. 28(3–4), 237–248 (2009).ADS  Google Scholar  51.Tadono, T. et al. Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II–4, 71–76 (2014). Google Scholar  52.Shean, D. High Mountain Asia 8-meter DEM Mosaics Derived from Optical Imagery, Version 1. (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2017).Page 2Example from the Langtang region of the Himalaya, illustrating geomorphological evidence comprising moraines and trimlines (A) used to delineate past glacier extent (B) and to reconstruct former glacier surfaces (C). Differencing of the reconstructed surface with a contemporary digital elevation model was used to quantify elevation change (D). The dataset analysis and preparation of this figure was made using ESRI ArcGIS software (v. 10.6).
https://www.nature.com/articles/s41598-021-03805-8