Conventional agriculture and not drought alters relationships between soil biota and functions

1.Baer, S. G. & Birgé, H. E. Soil ecosystem services: An overview. Manag. Soil Health Sustain. Agric. 1, 1–22 (2018). Google Scholar  2.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the anthropocene. Curr. Biol. 29, R1036–R1044 (2019).CAS  PubMed  Google Scholar  3.Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).ADS  CAS  PubMed  Google Scholar  4.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biol. 21, 973–985 (2015).ADS  Google Scholar  5.Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed  Google Scholar  6.Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 111, 5266–5270 (2014).ADS  CAS  PubMed  PubMed Central  Google Scholar  7.Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).ADS  CAS  PubMed  Google Scholar  8.Smith, P. et al. Global change pressures on soils from land use and management. Global Change Biol. 22, 1008–1028 (2016).ADS  Google Scholar  9.Birkhofer, K., Smith, H. G. & Rundlöf, M. Environmental Impacts of Organic Farming. in eLS. 1–7 (John Wiley & Sons Ltd, 2016).10.Bengtsson, J., Ahnström, J. & Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis: Organic agriculture, biodiversity and abundance. J. Appl. Ecol. 42, 261–269 (2005). Google Scholar  11.Abbott, L. K. & Manning, D. A. C. Soil health and related ecosystem services in organic agriculture. Sustain. Agric. Res. 4, 116 (2015). Google Scholar  12.de Graaff, M.-A., Hornslein, N., Throop, H. L., Kardol, P. & van Diepen, L. T. A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: A meta-analysis. in Advances in Agronomy vol. 155 1–44 (Elsevier, 2019).13.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).ADS  CAS  PubMed  PubMed Central  Google Scholar  14.Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).ADS  Google Scholar  15.Iglesias, A. & Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manage. 155, 113–124 (2015). Google Scholar  16.Pörtner, H. O. et al. IPBES-IPCC Co-sponsored Workshop Report Synopsis on Biodiversity and Climate Change. https://zenodo.org/record/4920414 (2021).17.Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).ADS  PubMed  Google Scholar  18.Holmstrup, M. et al. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland. Sci. Rep. 7, 41388 (2017).ADS  CAS  PubMed  PubMed Central  Google Scholar  19.Fry, E. L. et al. Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology 99, 2260–2271 (2018).PubMed  Google Scholar  20.Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).ADS  CAS  PubMed  PubMed Central  Google Scholar  21.Schimel, J. P. Life in dry soils: Effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018). Google Scholar  22.Kundel, D. et al. Drought effects on nitrogen provisioning in different agricultural systems: Insights gained and lessons learned from a field experiment. Nitrogen 2, 1–17 (2021). Google Scholar  23.Abbasi, A. O. et al. Reviews and syntheses: Soil responses to manipulated precipitation changes: An assessment of meta-analyses. Biogeosciences 17, 3859–3873 (2020).ADS  CAS  Google Scholar  24.Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9, 4249 (2018).ADS  PubMed  PubMed Central  Google Scholar  25.Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134, 109256 (2020).CAS  PubMed  PubMed Central  Google Scholar  26.Yin, R. et al. Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biol. Biochem. 147, 107847 (2020).CAS  PubMed  PubMed Central  Google Scholar  27.Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).ADS  CAS  Google Scholar  28.Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016). Google Scholar  29.Iizumi, T. & Wagai, R. Leveraging drought risk reduction for sustainable food, soil and climate via soil organic carbon sequestration. Sci. Rep. 9, 19744 (2019).ADS  CAS  PubMed  PubMed Central  Google Scholar  30.Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007). Google Scholar  31.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. PNAS 109, 18226–18231 (2012).ADS  CAS  PubMed  PubMed Central  Google Scholar  32.Schädler, M. et al. Investigating the consequences of climate change under different land-use regimes: A novel experimental infrastructure. Ecosphere 10, e02635 (2019). Google Scholar  33.Birkhofer, K. et al. Ecosystem services: Current challenges and opportunities for ecological research. Front. Ecol. Evol. 2, 87 (2015). Google Scholar  34.Birkhofer, K. et al. Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol. Cons. 218, 247–253 (2018). Google Scholar  35.Chabert, A. & Sarthou, J.-P. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agric. Ecosyst. Environ. 292, 106815 (2020).CAS  Google Scholar  36.Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. PNAS 117, 28140–28149 (2020).CAS  PubMed  PubMed Central  Google Scholar  37.Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity: A meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).PubMed  PubMed Central  Google Scholar  38.Kundel, D. et al. Effects of simulated drought on biological soil quality, microbial diversity and yields under long-term conventional and organic agriculture. FEMS Microbiol. Ecol. 96, fiaa205 (2020).CAS  PubMed  PubMed Central  Google Scholar  39.Chen, Q.-L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).CAS  Google Scholar  40.Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021). Google Scholar  41.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).ADS  PubMed  PubMed Central  Google Scholar  42.Vazquez, C., de Goede, R. G. M., Rutgers, M., de Koeijer, T. J. & Creamer, R. E. Assessing multifunctionality of agricultural soils: Reducing the biodiversity trade-off. Eur. J. Soil. Sci. 72, 1624–1639 (2020). Google Scholar  43.Zwetsloot, M. J. et al. Soil multifunctionality: Synergies and trade-offs across European climatic zones and land uses. Eur. J. Soil. Sci. 72, 1640–1654 (2020). Google Scholar  44.Delgado-Baquerizo, M. et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 20, 1295–1305 (2017).PubMed  Google Scholar  45.Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Phil. Trans. R. Soc. B 375, 20190112 (2020).CAS  PubMed  PubMed Central  Google Scholar  46.Meyer, S., Kundel, D., Birkhofer, K., Fliessbach, A. & Scheu, S. Soil microarthropods respond differently to simulated drought in organic and conventional farming systems. Ecol. Evol. 11, 10369–10380 (2021).PubMed  PubMed Central  Google Scholar  47.De Smedt, P. et al. Linking macrodetritivore distribution to desiccation resistance in small forest fragments embedded in agricultural landscapes in Europe. Landscape Ecol. 33, 407–421 (2018). Google Scholar  48.Liu, W. P. A., Phillips, L. M., Terblanche, J. S., Janion-Scheepers, C. & Chown, S. L. An unusually diverse genus of Collembola in the Cape Floristic Region characterised by substantial desiccation tolerance. Oecologia 195, 873–885 (2021).ADS  PubMed  Google Scholar  49.Birkhofer, K. et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 40, 2297–2308 (2008).CAS  Google Scholar  50.Mäder, P. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).ADS  PubMed  Google Scholar  51.Birkhofer, K., Bezemer, T. M., Hedlund, K. & Setälä, H. Community composition of soil organisms under different wheat farming systems. in Microbial Ecology in Sustainable Agroecosystems 89–111 (CRC press Boca Raton, 2012).52.Birkhofer, K. et al. Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biol. Biochem. 43, 2200–2207 (2011).CAS  Google Scholar  53.Siebert, J. et al. Extensive grassland-use sustains high levels of soil biological activity, but does not alleviate detrimental climate change effects. Adv. Ecol. Res. 60, 25–58 (2019). Google Scholar  54.de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276–280 (2012).ADS  Google Scholar  55.Torode, M. D. et al. Altered precipitation impacts on above-and below-ground grassland invertebrates: Summer drought leads to outbreaks in spring. Front. Plant Sci. 7, 1468 (2016).PubMed  PubMed Central  Google Scholar  56.Jonas, J. L., Wilson, G. W. T., White, P. M. & Joern, A. Consumption of mycorrhizal and saprophytic fungi by Collembola in grassland soils. Soil Biol. Biochem. 39, 2594–2602 (2007).CAS  Google Scholar  57.Susanti, W. I., Pollierer, M. M., Widyastuti, R., Scheu, S. & Potapov, A. Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs. Ecol. Evol. 9, 9027–9039 (2019).PubMed  PubMed Central  Google Scholar  58.Seres, A. et al. Collembola decrease the nitrogen uptake of maize through arbuscular mycorrhiza. ekol 28, 242–247 (2009). Google Scholar  59.Bender, S. F. & van der Heijden, M. G. A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52, 228–239 (2015).CAS  Google Scholar  60.Carson, J. K. et al. Low pore connectivity increases bacterial diversity in soil. Appl. Environ. Microbiol. 76, 3936–3942 (2010).ADS  CAS  PubMed  PubMed Central  Google Scholar  61.Krause, H.-M., Fliessbach, A., Mayer, J. & Mäder, P. Implementation and management of the DOK long-term system comparison trial. in Long-Term Farming Systems Research 37–51, (Elsevier, 2020).62.Richner, W. et al. Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz (GRUD 2017). Agrarforschung Schweiz 8, 47–66 (2017). Google Scholar  63.Kundel, D. et al. Design and manual to construct rainout-shelters for climate change experiments in agroecosystems. Front. Environ. Sci. 6, 14 (2018). Google Scholar  64.Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: A review. J. Ecol. 109, 600–613 (2021). Google Scholar  65.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). in Wiley StatsRef: Statistics Reference Online 1–15.66.Fletcher, D. J. & Underwood, A. J. How to cope with negative estimates of components of variance in ecological field studies. J. Exp. Mar. Biol. Ecol. 273, 89–95 (2002). Google Scholar  67.Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566 (2019).CAS  PubMed  PubMed Central  Google Scholar  68.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org.69.Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012). Google Scholar  Page 2 # Variable Unit Range Mean ± SD Method 1 Arbuscular mycorrhizal fungi (AMF) biomass nmol/g soil 3.0–30.0 8.6 ± 6.0 Lipid extractions from soil 2 Bacterial biomass nmol/g soil 23.0–48.8 36.9 ± 7.6 Lipid extractions from soil 3 Fungal biomass nmol/g soil 0.7–2.2 1.2 ± 0.3 Lipid extractions from soil 4 Microbial nitrogen (N) µgNmic/g dry soil 22.4–91.8 61.5 ± 20.8 Chloroform fumigation extraction 5 Microbial carbon (C) µgCmic/g dry soil 158–539 386.1 ± 110.7 Chloroform fumigation extraction 6 Nematoda abundance individuals/100 g dry soil 267.9–5604.3 1191.3 ± 821.8 Baermann funnel method 7 Collembola abundance individuals per sample 0–70,656 9692.4 ± 16,037.0 Heat gradient extraction 8 Oribatida abundance individuals per sample 308–20,636 2338.8 ± 2666.0 Heat gradient extraction 9 Chilopoda abundance individuals per sample 0–252 55.2 ± 54.4 Heat gradient extraction 10 Diplopoda abundance individuals per sample 0–1176 85.6 ± 191.1 Heat gradient extraction 11 Araneae activity density individuals per sample 1–29 11.3 ± 5.8 Pitfall traps 12 Staphylinidae activity density individuals per sample 0–37 6.2 ± 7.3 Pitfall traps 13 Arable weed cover % cover 0–90 15.6 ± 23.4 Visual estimate 14 Bacterial diversity Shannon index on OTU level 6.7–6.9 6.8 ± 0.1 16S rRNA sequencing 15 Nematoda diversity Shannon index on genus level 1.3–2.4 1.9 ± 0.2 Baermann funnel method 16 Soil mesofauna diversity Shannon index on subclass/suborder level 0.0–1.1 0.7 ± 0.3 Heat gradient extraction 17 Soil macrofauna diversity Shannon index on family/order level 0.0–1.8 1.1 ± 0.4 Heat gradient extraction 18 Araneae diversity Shannon index on species level 0.0–2.3 1.4 ± 0.6 Pitfall traps 19 Microbial respiration µgCO2 − C/gsoil h 0.2–1.0 0.5 ± 0.2 CO2 evolution 20 Soil feeding activity Average % of baits consumed 1.4–99.7 49.6 ± 30.7 Bait-lamina 21 Litter decomposition Organic C/organic N (g) 54.1–128.8 80.2 ± 15.9 Litterbags 22 Soil water content % water content/g dry soil 7.2–29.9 17.5 ± 6.1 Gravimetric 23 Soil mineral N µg ammonium and nitrate/g dry soil 2.4–38.9 7.3 ± 7.1 Cd reduction and modified Berthelot reaction 24 C content wheat aboveground biomass % C/g dry plant 0.8–3.4 2.0 ± 0.7 C/N analyses 25 N content wheat aboveground biomass % N/g dry plant 42.0–45.9 43.8 ± 0.9 C/N analyses 26 Total aboveground wheat biomass dry mass (t/ha) 2.1–22.4 10.1 ± 5.8 Subsampling and weighting The total number of samples is N = 72, with the exception of variable 19 (N = 71) and variables 4, 5 and 21 (N = 70). For key references and detailed descriptions refer to the Suplementary information.
https://www.nature.com/articles/s41598-021-03276-x