1.Wolanski, E., Newton, A., Rabalais, N. & Legrand, C. Coastal Zone Management—Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2013). Google Scholar 2.Malone, T. C. & Newton, A. The Globalization of cultural eutrophication in the coastal ocean: Causes and consequences. Front. Mar. Sci. 7, 670. https://doi.org/10.3389/fmars.2020.00670 (2020).Article Google Scholar 3.Bindoff, N. L. et al. Changing Ocean, Marine Ecosystems, and Dependent Communities 477–587 (Intergovernmental Panel on Climate Change (IPCC), 2019). Google Scholar 4.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240. https://doi.org/10.1126/science.aam7240 (2018).CAS Article PubMed Google Scholar 5.Malhi, Y. et al. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B 375, 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).CAS Article Google Scholar 6.HELCOM. Eutrophication in the Baltic Sea—An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Report No. 115B, 3–140 (Baltic Sea Environment Proceedings, 2009).7.Philippart, C. J. M. et al. Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. J. Exp. Mar. Biol. Ecol. 400, 52–69. https://doi.org/10.1016/j.jembe.2011.02.023 (2011).Article Google Scholar 8.Graham, L. P. et al. Simulating River Flow to the Baltic Sea from Climate Simulations Over the Past Millennium. Report No. 1797–2469 173–182 (Finnish Environment Institute, Boreal Environment Research, 2009). Google Scholar 9.Belkin, I. M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81, 207–213. https://doi.org/10.1016/j.pocean.2009.04.011 (2009).ADS Article Google Scholar 10.Schindler, D. W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 51, 356–363. https://doi.org/10.4319/lo.2006.51.1_part_2.0356 (2006).ADS Article Google Scholar 11.Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283. https://doi.org/10.1038/nature01610 (2003).ADS CAS Article PubMed Google Scholar 12.Gustafsson, B. G. et al. Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio 41, 534–548. https://doi.org/10.1007/s13280-012-0318-x (2012).CAS Article PubMed PubMed Central Google Scholar 13.Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl. Acad. Sci. USA 111, 5628–5633. https://doi.org/10.1073/pnas.1323156111 (2014).ADS CAS Article PubMed PubMed Central Google Scholar 14.Broman, E., Sjostedt, J., Pinhassi, J. & Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5, 96. https://doi.org/10.1186/s40168-017-0311-5 (2017).Article PubMed PubMed Central Google Scholar 15.Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. USA 105, 15452–15457. https://doi.org/10.1073/pnas.0803833105 (2008).ADS Article PubMed PubMed Central Google Scholar 16.HELCOM. State of the Baltic Sea—Second HELCOM holistic assessment 2011–2016. (Baltic Sea Environment Proceedings, 2018).17.Conley, D. J. et al. Tackling hypoxia in the Baltic Sea: Is engineering a solution?. Environ. Sci. Technol. 43, 3407–3411. https://doi.org/10.1021/es8027633 (2009).ADS CAS Article PubMed Google Scholar 18.Nealson, K. H. Sediment bacteria: Who’s there, what are they doing, and what’s new? Annu. Rev. Earth Planet. Sci. 25, 403–434. https://doi.org/10.1146/annurev.earth.25.1.403 (1997).ADS CAS Article PubMed Google Scholar 19.Köchling, T., Lara-Martín, P., González-Mazo, E., Amils, R. & Sanz, J. L. Microbial community composition of anoxic marine sediments in the bay of Cádiz (Spain). Int. Microbiol. 14, 143–154. https://doi.org/10.2436/20.1501.01.143 (2011).CAS Article PubMed Google Scholar 20.Kristensen, E., Ahmed, S. I. & Devol, A. H. Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest?. Limnol. Oceanogr. 40, 1430–1437. https://doi.org/10.4319/lo.1995.40.8.1430 (1995).ADS CAS Article Google Scholar 21.Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microbiol. 78, 8264–8271. https://doi.org/10.1128/aem.01821-12 (2012).ADS CAS Article PubMed PubMed Central Google Scholar 22.Edlund, A., Soule, T., Sjöling, S. & Jansson, J. K. Microbial community structure in polluted Baltic Sea sediments. Environ. Microbiol. 8, 223–232. https://doi.org/10.1111/j.1462-2920.2005.00887.x (2006).CAS Article PubMed Google Scholar 23.Broman, E., Sachpazidou, V., Pinhassi, J. & Dopson, M. Oxygenation of hypoxic coastal Baltic Sea sediments impacts on chemistry, microbial community composition, and metabolism. Front. Microbiol. 8, 2453. https://doi.org/10.3389/fmicb.2017.02453 (2017).Article PubMed PubMed Central Google Scholar 24.Broman, E. et al. Spring and late summer phytoplankton biomass impact on the coastal sediment microbial community structure. Microbial Ecol. 77, 288-303. https://doi.org/10.1007/s00248-018-1229-6 (2018).CAS Article Google Scholar 25.HELCOM. Monitoring Data on Ocean Hydrography. data.ices.dk/view-map (2020).26.Wåhlström, I. et al. Combined climate change and nutrient load impacts on future habitats and eutrophication indicators in a eutrophic coastal sea. Limnol. Oceanogr. 65, 2170–2187. https://doi.org/10.1002/lno.11446 (2020).ADS CAS Article Google Scholar 27.Conley, D. J. et al. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environ. Sci. Technol. 45, 6777–6783. https://doi.org/10.1021/es201212r (2011).ADS CAS Article PubMed PubMed Central Google Scholar 28.Seidel, L. & Pålsson, C. Email between Author and the county administrative board (Länsstyrelsen), Kalmar County. (2018).29.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929. https://doi.org/10.1126/science.1156401 (2008).ADS CAS Article PubMed Google Scholar 30.Hjerne, O., Hajdu, S., Larsson, U., Downing, A. S. & Winder, M. Climate driven changes in timing, composition and magnitude of the Baltic Sea phytoplankton spring bloom. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00482 (2019).Article Google Scholar 31.Wasmund, N. & Uhlig, S. Phytoplankton trends in the Baltic Sea. ICES J. Mar. Sci. 60, 177–186. https://doi.org/10.1016/s1054-3139(02)00280-1 (2003).Article Google Scholar 32.Sinkko, H. et al. Increasing oxygen deficiency changes rare and moderately abundant bacterial communities in coastal soft sediments. Sci. Rep. 9, 16341. https://doi.org/10.1038/s41598-019-51432-1 (2019).ADS CAS Article PubMed PubMed Central Google Scholar 33.Jørgensen, B. B. Mineralization of organic matter in the sea bed—The role of sulphate reduction. Nature 296, 643–645. https://doi.org/10.1038/296643a0 (1982).ADS Article Google Scholar 34.Sinkko, H. et al. Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea. PLoS ONE 8, e67061. https://doi.org/10.1371/journal.pone.0067061 (2013).ADS CAS Article PubMed PubMed Central Google Scholar 35.Sinkko, H. et al. Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges. PLoS ONE 6, e21555. https://doi.org/10.1371/journal.pone.0021555 (2011).ADS CAS Article PubMed PubMed Central Google Scholar 36.Caraco, N. F., Cole, J. J. & Likens, G. E. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341, 316–318. https://doi.org/10.1038/341316a0 (1989).ADS CAS Article Google Scholar 37.Slomp, C. P., Van der Gaast, S. J. & Van Raaphorst, W. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar. Chem. 52, 55–73. https://doi.org/10.1016/0304-4203(95)00078-X (1996).CAS Article Google Scholar 38.Mortimer, C. H. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29, 280–329. https://doi.org/10.2307/2256395 (1941).CAS Article Google Scholar 39.Käyhkö, J. et al. Second Assessment of Climate Change for the Baltic Sea Basin (Springer International Publishing, 2015). Google Scholar 40.Colby, G. A. et al. Warming climate is reducing the diversity of dominant microbes in the largest high arctic lake. Front. Microbiol. 11, 2316. https://doi.org/10.1101/705178 (2020).Article Google Scholar 41.Paerl, H. W. & Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37. https://doi.org/10.1111/j.1758-2229.2008.00004.x (2009).CAS Article PubMed Google Scholar 42.Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 10, 849–849. https://doi.org/10.3389/fmicb.2019.00849 (2019).Article PubMed PubMed Central Google Scholar 43.Reed, D. C., Slomp, C. P. & Gustafsson, B. G. Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: A coupled benthic–pelagic model of a coastal system. Limnol. Oceanogr. 56, 1075–1092. https://doi.org/10.4319/lo.2011.56.3.1075 (2011).ADS CAS Article Google Scholar 44.Obenour, D. R., Michalak, A. M., Zhou, Y. & Scavia, D. Quantifying the impacts of stratification and nutrient loading on hypoxia in the northern Gulf of Mexico. Environ. Sci. Technol. 46, 5489–5496. https://doi.org/10.1021/es204481a (2012).ADS CAS Article PubMed PubMed Central Google Scholar 45.Chen, Y.-J. et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 15, 2986-3004. https://doi.org/10.1038/s41396-021-00988-w (2021).CAS Article PubMed PubMed Central Google Scholar 46.Mußmann, M., Pjevac, P., Krüger, K. & Dyksma, S. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J. 11, 1276–1281. https://doi.org/10.1038/ismej.2016.185 (2017).CAS Article PubMed PubMed Central Google Scholar 47.Rabalais, N. N., Turner, R. E., Díaz, R. J. & Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66, 1528–1537. https://doi.org/10.1093/icesjms/fsp047 (2009).Article Google Scholar 48.Polukhin, A. The role of river runoff in the Kara Sea surface layer acidification and carbonate system changes. Environ. Res. Lett. 14, 105007. https://doi.org/10.1088/1748-9326/ab421e (2019).ADS CAS Article Google Scholar 49.Laruelle, G. G. et al. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat. Commun. 9, 454. https://doi.org/10.1038/s41467-017-02738-z (2018).ADS CAS Article PubMed PubMed Central Google Scholar 50.Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586. https://doi.org/10.1038/s41579-019-0222-5 (2019).CAS Article PubMed PubMed Central Google Scholar 51.Ishida, H., Isono, R. S., Kita, J. & Watanabe, Y. W. Long-term ocean acidification trends in coastal waters around Japan. Sci. Rep. 11, 5052. https://doi.org/10.1038/s41598-021-84657-0 (2021).ADS CAS Article PubMed PubMed Central Google Scholar 52.Broman, E., Sachpazidou, V., Dopson, M. & Hylander, S. Diatoms dominate the eukaryotic metatranscriptome during spring in coastal ‘dead zone’ sediments. Proc. R. Soc. B Biol. Sci. 284, 20171617. https://doi.org/10.1098/rspb.2017.1617 (2017).CAS Article Google Scholar 53.Hugerth, L. W. et al. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Appl. Environ. Microbiol. 80, 5116–5123. https://doi.org/10.1128/Aem.01403-14 (2014).ADS Article PubMed PubMed Central Google Scholar 54.Lindh, M. V. et al. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities. Front. Microbiol. 6, 223. https://doi.org/10.3389/fmicb.2015.00223 (2015).ADS Article PubMed PubMed Central Google Scholar 55.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581. https://doi.org/10.1038/nmeth.3869 (2016).CAS Article PubMed PubMed Central Google Scholar 56.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004. https://doi.org/10.1038/nbt.4229 (2018).CAS Article PubMed Google Scholar 57.R Core Team. R: A language and environment for statistical computing. (2018).Page 2 Sample Year Oxygen (mg/L) n = 1 Temperature (°C) n = 1 pH n = 3 References Shallow 2013 11.3 6.5 7.85a Broman et al. 14 Intermediate 2013 0.8 2.8 7.95a Broman et al. 14 Deep 2013 0.85 2.6 8.1 ± 0.19 Broman et al. 14 Shallow 2017 5.88 8.5 7.04 ± 0.03 This study Intermediate 2017 2.55 2.5 6.75 ± 0.04 This study Deep 2017 0.49 5.5 7.29 ± 0.03 This study Overview of in situ oxygen and temperature in bottom waters in 2013 and 2017 at each sampling site as well as pH measured for bottom waters for both years and all sites in triplicates; mean (n = 1 or 3 as indicated) ± standard deviation. an = 1.
https://www.nature.com/articles/s41598-021-02725-x
Interplay between eutrophication and climate warming on bacterial communities in coastal sediments differs depending on water depth and oxygen history
