Health co-benefits of climate change mitigation depend on strategic power plant retirements and pollution controls

1. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

2. Jackson, R. B. et al. Global energy growth is outpacing decarbonization. Environ. Res. Lett. 13, 120401 (2018).

3. Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

4. Tong, D. et al. Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030. Environ. Sci. Technol. 52, 12905–12914 (2018).

5. Wu, R. et al. Air quality and health benefits of China’s emission control policies on coal-fired power plants during 2005–2020. Environ. Res. Lett. 14, 094016 (2019).

6. Ou, Y., West, J. J., Smith, S. J., Nolte, C. G. & Loughlin, D. H. Air pollution control strategies directly limiting national health damages in the US. Nat. Commun. 11, 957 (2020).

7. West, J. J. et al. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change 3, 885–889 (2013).

8. Driscoll, C. T. et al. US power plant carbon standards and clean air and health co-benefits. Nat. Clim. Change 5, 535–540 (2015).

9. Buonocore, J. J. et al. Health and climate benefits of different energy-efficiency and renewable energy choices. Nat. Clim. Change 6, 100–105 (2016).

10. Shindell, D. T., Lee, Y. & Faluvegi, G. Climate and health impacts of US emissions reductions consistent with 2 °C. Nat. Clim. Change 6, 503–507 (2016).

11. Millstein, D., Wiser, R., Bolinger, M. & Barbose, G. The climate and air-quality benefits of wind and solar power in the United States. Nat. Energy 2, 17134 (2017).

12. Silva, R. A. et al. Future global mortality from changes in air pollution attributable to climate change. Nat. Clim. Change 7, 647–651 (2017).

13. Peng, W. et al. Managing China’s coal power plants to address multiple environmental objectives. Nat. Sustain. 1, 693–701 (2018).

14. Shindell, D., Faluvegi, G., Seltzer, K. & Shindell, C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat. Clim. Change 8, 291–295 (2018).

15. Luderer, G. et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 10, 5229 (2019)..

16. Shindell, D. & Smith, C. J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 573, 408–411 (2019).

17. Scovronick, N. et al. The impact of human health co-benefits on evaluations of global climate policy. Nat. Commun. 10, 2095 (2019).

18. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

19. Rogelj, J. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

20. Tong, D. et al. Targeted emission reductions from global super-polluting power plant units. Nat. Sustain. 1, 59–68 (2018).

21. Luckow, P., Wise, M. A., Dooley, J. J. & Kim, S. H. Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO 2 concentration limit scenarios. Int. J. Greenh. Gas Control 4, 865–877 (2010).

22. O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of Shared Socioeconomic Pathways. Clim. Change 122, 387–400 (2014).

23. Rao, A. B. et al. Evaluation of potential cost reductions from improved amine-based CO 2 capture systems. Energy Policy 34, 3765–3772 (2006).

24. van Horssen, A. et al. The Impacts of CO 2 Capture Technologies in Power Generation and Industry on Greenhouse Gases Emissions and Air Pollutants in the Netherlands (TNO and Univ. of Utrecht, 2009); https://www.rivm.nl/bibliotheek/digitaaldepot/BOLK_II_CCS_Final-Version%20UPDATE%2028-07-2010.pdf

25. Air Pollution Impacts from Carbon Capture and Storage (CCS) EEA Technical Report No. 14/2011 (European Environment Agency, 2011); https://www.eea.europa.eu/publications/carbon-capture-and-storage

26. Koornneef, J. et al. Carbon Dioxide Capture and Air Quality: Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality (InTech, 2011); https://www.intechopen.com/chapters/16320

27. Bey, I. et al. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J. Geophys. Res. Atmos. 106, 23073–23095 (2001).

28. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

29. Rauner, S. et al. Coal-exit health and environmental damage reductions outweigh economic impacts. Nat. Clim. Change 10, 308–312 (2020).

30. Sampedro, J. et al. Quantifying the reductions in mortality from air-pollution by cancelling new coal power plants. Energy Clim. Change 2, 100023 (2021).

31. Fofrich, R.A. et al. Early retirement of power plants in climate mitigation scenarios. Environ. Res. Lett. 15, 094064 (2020).

32. Sergi, B. J. et al. Optimizing emissions reductions from the U.S. power sector for climate and health benefits. Environ. Sci. Technol. 54, 7513–7523 (2020).

33. Hong, C. et al. Impacts of climate change on future air quality and human health in China. Proc. Natl Acad. Sci. USA 116, 17193–17200 (2019).

34. van Vuuren, D. P. et al. The Representative Concentration Pathways: an overview. Clim. Change 109, 5–31 (2011).

35. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

36. Davis, S. J. & Socolow, R. H. Commitment accounting of CO 2 emissions. Environ. Res. Lett. 9, 084018 (2014).

37. Cui, R. Y. et al. Quantifying operational lifetimes for coal power plants under the Paris goals. Nat. Commun. 10, 4759 (2019).

38. Garbarino, E. et al. Best Available Techniques (BAT) Reference Document for the Management of Waste from Extractive Industries in accordance with Directive 2006/21/EC (Publications Office of the European Union, 2018); https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/best-available-techniques-bat-reference-document-management-waste-extractive-industries

39. Guideline on Best Available Technologies of Pollution Prevention and Control for Thermal Power Plant (Ministry of Ecology and Environment of the People’s Republic of China, 2016); http://www.mee.gov.cn/gkml/hbb/bgth/201610/t20161009_365147.htm

40. Koornneef, J. et al. The impact of CO 2 capture in the power and heat sector on the emission of SO 2 , NO x , particulate matter, volatile organic compounds and NH 3 in the European Union. Atmos. Environ. 44, 1369–1385 (2010).

41. Brauer, M. et al. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 50, 79–88 (2016).

42. Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

43. Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M. & Chin, M. Natural and transboundary pollution influences on sulfate–nitrate–ammonium aerosols in the United States: implications for policy. J. Geophys. Res. 109, D15204 (2004).

44. Park, R. J., Jacob, D. J., Kumar, N. & Yantosca, R. M. Regional visibility statistics in the United States: natural and transboundary pollution influences, and implications for the Regional Haze Rule. Atmos. Environ. 40, 5405–5423 (2006).

45. Park, R. J., Jacob, D. J., Chin, M. & Martin, R. V. Sources of carbonaceous aerosols over the United States and implications for natural visibility. J. Geophys. Res. 108, 4355 (2003).

46. Liao, H., Henze, D. K., Seinfeld, J. H., Wu, S. & Mickley, L. J. Biogenic secondary organic aerosol over the United States: comparison of climatological simulations with observations. J. Geophys. Res. 112, D06201 (2007).

47. Fairlie, D. T., Jacob, D. J. & Park, R. J. The impact of transpacific transport of mineral dust in the United States. Atmos. Environ. 41, 1251–1266 (2007).

48. Zender, C. S., Bian, H. & Newman, D. Mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology. J. Geophys. Res. 108, 4416 (2003).

49. Alexander, B. et al. Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes. J. Geophys. Res. 110, D10307 (2005).

50. Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B. & Lin, J. T. Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 11, 3137–3157 (2011).

51. Seinfeld, J. H. & Pankow, J. F. Organic atmospheric particulate material. Annu. Rev. Phys. Chem. 54, 121–140 (2003).

52. Pye, H. O. T. et al. Effect of changes in climate and emissions on future sulfate–nitrate–ammonium aerosol levels in the United States. J. Geophys. Res. 114, D01205 (2009).

53. Heald, C. L. et al. A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett. 32, L18809 (2005).

54. van Donkelaar, A. et al. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmos. Chem. Phys. 8, 2999–3014 (2008).

55. Janssens-Maenhout, G. et al. HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 15, 11411–11432 (2015).

56. Bolshcer, M. et al. RETRO Deliverable D1-6 (RETRO Documentation, 2007).

57. Guenther, A. B. et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).

58. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

59. Wang, Y., Jacob, D. J. & Logan, J. A. Global simulation of tropospheric O 3 -NO x -hydrocarbon chemistry: 1. Model formulation. J. Geophys. Res. 103, 10713–10725 (1998).

60. Yienger, J. J. & Levy, H. Empirical model of global soil-biogenic NO x emissions. J. Geophys. Res. 100, 11447–11464 (1995).

61. Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C. & Koshak, W. J. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. J. Geophys. Res. 117, 20307 (2012).

62. Ott, L. E. et al. Production of lightning NO x and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations. J. Geophys. Res. 115, D04301 (2010).

63. Price, C. & Rind, D. Modeling global lightning distributions in a general circulation model. Mon. Weather Rev. 122, 1930–1939 (1994).

64. Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).

65. Burnett, R. T. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122, 397–403 (2014).

66. Jiang, X. et al. Revealing the hidden health costs embodied in Chinese exports. Environ. Sci. Technol. 49, 4381–4388 (2015).

67. Lelieveld, J. et al. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc. Res. 116, 1910–1917 (2020).

68. Dicker, D. et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1684–1735 (2018).

69. Global Health Data Exchange (Institute for Health Metrics and Evaluation, accessed 17 March 2021); http://ghdx.healthdata.org/gbd-results-tool

70. Population Estimates and Projections (World Bank Group, 2011); https://databank.worldbank.org/source/population-estimates-and-projections

71. CIESIN Gridded Population of the World, Version 4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11 (NASA SEDAC, 2018).

72. Kc, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

73. Hughes, B. B. et al. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model. Bull. World Health Org. 89, 478–486 (2011).
https://www.nature.com/articles/s41558-021-01216-1