Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication

1.Li, W., Ya, L., Lu, H. & Huang, Z. Recycling of phosphorus-containing plastic based on the dual effects of switchable hydrophilicity solvents. Chemosphere 259, 127402. https://doi.org/10.1016/j.chemosphere.2020.127402 (2020).ADS  CAS  Article  Google Scholar  2.Liu, X. et al. Historic trends and future prospects of waste generation and recycling in China’s phosphorus cycle. Environ. Sci. Technol. 54, 5131–5139. https://doi.org/10.1021/acs.est.9b05120 (2020).ADS  CAS  Article  PubMed  Google Scholar  3.Bai, Z. et al. Changes in phosphorus use and losses in the food chain of China during 1950–2010 and forecasts for 2030. Nutr. Cycl. Agroecosyst. 104, 361–372. https://doi.org/10.1007/s10705-015-9737-y (2016).Article  Google Scholar  4.Schoumans, O. et al. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: A review. Sci. Total Environ. 468, 1255–1266. https://doi.org/10.1016/j.scitotenv.2013.08.061 (2014).ADS  CAS  Article  PubMed  Google Scholar  5.Huang, J., Xu, C., Bradley, G., Wang, X. & Ren, P. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 159, 171–179. https://doi.org/10.1016/j.jclepro.2017.05.008 (2017).Article  Google Scholar  6.Ni, Z., Wang, S. & Wang, Y. Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China. Environ. Pollut. 219, 537–544. https://doi.org/10.1016/j.envpol.2016.05.087 (2016).CAS  Article  PubMed  Google Scholar  7.Mcdowell, R. & David, N. A review of the cost-effectiveness and suitability of mitigation strategies to prevent phosphorus loss from dairy farms in New Zealand and Australia. J. Environ. Qual. 41, 680–693. https://doi.org/10.2134/jeq2011.0041 (2012).CAS  Article  PubMed  Google Scholar  8.Mockler, E. et al. Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework. Sci. Total Environ. 601, 326–339. https://doi.org/10.1016/j.scitotenv.2017.05.186 (2017).ADS  CAS  Article  PubMed  Google Scholar  9.Bragina, L. et al. Spatial and temporal variability in costs and effectiveness in phosphorus loss mitigation at farm scale: A scenario analysis. J. Environ. Manag. 245, 330–337. https://doi.org/10.1016/j.jenvman.2019.05.080 (2019).Article  Google Scholar  10.Wang, M. et al. Hotspots for nitrogen and phosphorus losses from food production in China: A county-scale analysis. Environ. Sci. Technol. 52, 5782–5791. https://doi.org/10.1021/acs.est.7b06138 (2018).ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  11.Wu, H., Yuan, Z., Gao, L., Zhang, L. & Zhang, Y. Life-cycle phosphorus management of the crop production–consumption system in China, 1980–2012. Sci. Total Environ. 502, 706–721. https://doi.org/10.1016/j.scitotenv.2014.09.056 (2015).ADS  CAS  Article  PubMed  Google Scholar  12.Yuan, Z. et al. Human perturbation of the global phosphorus cycle: Changes and consequences. Environ. Sci. Technol. 52, 2438–2450. https://doi.org/10.1016/j.scitotenv.2014.09.056 (2018).ADS  CAS  Article  PubMed  Google Scholar  13.Schindler, D., Stephen, R., Steven, C., Robert, E. & Diane, M. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50, 8923–8929. https://doi.org/10.1021/acs.est.7b03910 (2016).CAS  Article  PubMed  Google Scholar  14.Marianne, B., Inga, G. & Anne, F. Implementation of mitigation measures to reduce phosphorus losses: The vestre vansjø pilot catchment. Agriculture 9, 15. https://doi.org/10.3390/agriculture9010015 (2019).Article  Google Scholar  15.Zhu, X. et al. Phosphorus fertilizer effect in sugarcane red soil and its loss risk assessment under different phosphorus application rates. Agric. Sci. Technol. 18, 2372–2377. https://doi.org/10.16175/j.cnki.1009-4229.2017.12.040 (2017).Article  Google Scholar  16.Cassidy, R., Donnacha, G. & Catherine, J. Impact of legacy soil phosphorus on losses in drainage and overland flow from grazed grasslands soils. Environ. Sci. Technol. 57, 474–484. https://doi.org/10.1016/j.scitotenv.2016.07.063 (2017).CAS  Article  Google Scholar  17.Wu, L., Long, T., Liu, X. & Guo, J. Impacts of climate and land-use changes on the migration of non-point source nitrogen and phosphorus during rainfall-runoff in the Jialing river watershed, China. J. Hydrol. 475, 26–41. https://doi.org/10.1016/j.jhydrol.2012.08.022 (2012).ADS  CAS  Article  Google Scholar  18.Zhang, M., Li, D. & Zhou, Y. Effects of rainfall intensity and slope gradient on soil erosion, nitrogen and potassium loss on loess slope. J. Soil Water Conserv. 32, 85–90. https://doi.org/10.1007/s00477-014-0896-1 (2018).Article  Google Scholar  19.Li, H., Erwin, K. & Roland, B. Enhanced soil aggregate stability limits colloidal phosphorus loss potentials in agricultural systems. Environ. Sci. Eur. 32, 1–14. https://doi.org/10.1186/s12302-020-0299-5 (2020).CAS  Article  Google Scholar  20.Vero, S., Erin, S. & Donnacha, D. Evidence and perception of phosphorus loss risk factors in farmyards. Environ. Sci. Policy 114, 542–548. https://doi.org/10.1016/j.envsci.2020.09.025 (2020).Article  Google Scholar  21.Zhang, Y. et al. Structural equation modeling of PAHs in ambient air, dust fall, soil, and cabbage in vegetable bases of northern China. Environ. Pollut. 239, 13–20. https://doi.org/10.1016/j.envpol.2018.03.084 (2018).CAS  Article  PubMed  Google Scholar  22.Yang, T. et al. Impact of nitrogen fertilizer, greenhouse, and crop species on yield-scaled nitrous oxide emission from vegetable crops: A meta-analysis. Ecol. Indic. 105, 717–726. https://doi.org/10.1016/j.ecolind.2019.02.001 (2019).CAS  Article  Google Scholar  23.Wang, Y. Full-scale deep-entry promotion agricultural and village green exhibition [N]. Farmers daily, 2019-09-07(003).24.Bovill, W., Huang, C. & Glenn, M. Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: Challenges and directions. Crop Pasture Sci. 64, 179–198. https://doi.org/10.1071/CP13135 (2013).Article  Google Scholar  25.Yang, W., Xia, Y., Jiang, X. & Yan, X. Influencing factors and estimation of total phosphorus runoff from farmlands in China. J. Agro-Environ. Sci. 34, 319–325. https://doi.org/10.11654/jaes.2015.02.016 (2015).CAS  Article  Google Scholar  26.Tian, W., Peng, B., Wang, K., Liang, K. & Liu, C. Simulating the change of precipitation-runoff relationship during drought years in the eastern monsoon region of China. Sci. Total Environ. 723, 138172. https://doi.org/10.1016/j.scitotenv.2020.138172 (2020).ADS  CAS  Article  PubMed  Google Scholar  27.Liu, L., Zheng, X., Peng, C., Li, J. & Xu, Y. Driving forces and future trends on total nitrogen loss of planting in China. Environ. Pollut. 267, 115660. https://doi.org/10.1016/j.envpol.2020.115660 (2020).CAS  Article  Google Scholar  28.Hua, K. & Zhu, B. Phosphorus loss through surface runoff and leaching in response to the long-term application of different organic amendments on sloping croplands. J. Soil. Sediment. 20, 3459–3471. https://doi.org/10.1007/s11368-020-02675-3 (2020).CAS  Article  Google Scholar  29.Wang, N., Liu, L., Sun, K. & Duan, S. Analysis of structure–activity relationship and toxicity of organophosphorus pesticide to plankton. Ecol. Environ. 21, 118–123. https://doi.org/10.3969/j.issn.1674-5906.2012.01.021 (2012).CAS  Article  Google Scholar  30.Tian, W., Liu, X., Liu, C. & Bai, P. Investigation and simulations of changes in the relationship of precipitation-runoff in drought years. J. Hydrol. 565, 95–105. https://doi.org/10.1016/j.jhydrol.2018.08.015 (2018).ADS  Article  Google Scholar  31.Zhi, X. et al. Light spatial distribution in the canopy and crop development in cotton. PLoS One 9, E113409. https://doi.org/10.1371/journal.pone.0113409 (2014).ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  32.Yu, H., Yang, P., Lin, H., Ren, S. & He, X. Effects of sodic soil reclamation using flue gas desulphurization gypsum on soil pore characteristics, bulk density, and saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 78, 1201–1213. https://doi.org/10.2136/sssaj2013.08.0352 (2014).ADS  CAS  Article  Google Scholar  33.Abbas, M., Shah, J., Irfan, M. & Memon, M. Remobilization and utilization of phosphorus in wheat cultivars under induced phosphorus deficiency. J. Plant Nutr. 41, 1–12. https://doi.org/10.1080/01904167.2018.1458871 (2018).CAS  Article  Google Scholar  34.Wu, F. et al. Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera abel. Forests 10(348), 2019. https://doi.org/10.3390/f10040348 (2019).Article  Google Scholar  35.Wang, Y., Zhu, Y., Zhang, S. & Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers?. J. Clean. Prod. 199, 882–890. https://doi.org/10.1016/j.jclepro.2018.07.222 (2018).Article  Google Scholar  36.Wu, Q. Mechanisms of Difference in Phosphorus Availability and Fertilizer P Use Efficiency in Three Soils Under Long-Term Fertilization (China Agricultural University, 2014). Google Scholar  37.Kamel, A. et al. Oxidation of selected organophosphate pesticides during chlorination of simulated drinking water. Water Res. 43, 522–534. https://doi.org/10.1016/j.watres.2008.10.038 (2009).CAS  Article  PubMed  Google Scholar  38.Chu, Y., Li, Y., Wang, Y., Li, B. & Zhang, Y. Investigation of interaction modes involved in alkaline phosphatase and organophosphorus pesticides via molecular simulations. Food Chem. 254, 80–86. https://doi.org/10.1016/j.foodchem.2018.01.187 (2018).CAS  Article  PubMed  Google Scholar  39.Sun, K., Wang, N., Liu, L. & Duan, S. Ecological risks assessment of organophosphorus pesticides based on response of Scenedesmus quadricanda. China Environ. Sci. 33, 868–873 (2013).CAS  Google Scholar  40.Gray, G., McDowell, R., Carrick, S. & Thomas, S. The effect of irrigation and urine application on phosphorus losses to subsurface flow from a stony soil. Agric. Ecosyst. Environ. 233, 425. https://doi.org/10.1016/j.agee.2016.09.040 (2016).Article  Google Scholar  41.Ye, Y., Liang, X., Li, L., Yuan, J. & Zhu, S. Effects of different water and nitrogen managements on phosphorus loss via runoff and leaching from paddy fields in Taihu lake basin. Acta Sci. Circum. 35, 1125–1135. https://doi.org/10.13671/j.hjkxxb.2014.0811 (2015).CAS  Article  Google Scholar  42.Fan, Z. et al. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agric. Water Manag. 144, 11–19. https://doi.org/10.1016/j.agwat.2014.05.010 (2014).Article  Google Scholar  43.Zhu, J., Li, X., Christie, P. & Li, J. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agric. Ecosyst. Environ. 111, 70–80. https://doi.org/10.1016/j.agee.2005.04.025 (2015).Article  Google Scholar  44.Ren, T., Christie, P., Wang, J., Chen, Q. & Zhang, F. Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Sci. Hortic. 125, 25–33. https://doi.org/10.1016/j.scienta.2010.02.014 (2010).CAS  Article  Google Scholar  45.Gu, B. et al. Cleaning up nitrogen pollution may reduce future carbon sinks. Glob. Environ. Change. 48, 56–66. https://doi.org/10.1016/j.gloenvcha.2017.10.007 (2018).Article  Google Scholar  46.He, S. & Katherine, D. Microbiology of ‘Candidatus Accumulibacter’ in activated sludge. Microb. Biotechnol. 4, 603–619. https://doi.org/10.1111/j.1751-7915.2011.00248.x (2011).CAS  Article  PubMed  PubMed Central  Google Scholar  47.Devlin, T., Biase, A., Wei, V., Elektorowicz, M. & Oleszkiewicz, J. Removal of soluble phosphorus from surface water using iron (Fe–Fe) and aluminum (Al–Al) electrodes. Environ. Sci. Technol. 51, 13825–13833. https://doi.org/10.1021/acs.est.7b02353 (2017).ADS  CAS  Article  PubMed  Google Scholar  48.Huang, G., Liu, C., Zhang, Y. & Chen, Z. Groundwater is important for the geochemical cycling of phosphorus in rapidly urbanized areas: A case study in the pearl river delta. Environ. Pollut. 260, 114079. https://doi.org/10.1016/j.envpol.2020.114079 (2020).CAS  Article  PubMed  Google Scholar  49.Zhao, Y., Deng, X., Zhan, J., Xi, B. & Lu, Q. Progress on preventing and controlling strategies of lake eutrophication in China. Environ. Sci. Technol. 33, 92–98. https://doi.org/10.1111/j.1744-7917.2010.01338.x (2010).CAS  Article  Google Scholar  50.Xu, H. et al. Long-term nutrient trends and harmful cyanobacterial bloom potential in hypertrophic lake Taihu, China. Hydrobiologia 787, 229–242. https://doi.org/10.1007/s10750-016-2967-4 (2017).CAS  Article  Google Scholar  51.Li, Q. & Li, D. Factors driving the decline of fertilizer application intensity in China in context of green development: Based on spatial panel data model. J. Agro-For. Econ. Manag. 18, 462–471. https://doi.org/10.16195/j.cnki.cn36-1328/f.2019.04.50 (2019).Article  Google Scholar  52.Lu, W. Effects of fertilization patterns on chemical forms of nitrogen in dark brown soil and its distribution in different aggregates. Agric. Sci. Technol. 15, 1910–1913. https://doi.org/10.16175/j.cnki.1009-4229.2014.11.020 (2014).Article  Google Scholar  53.Wang, S. et al. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems. Soil Sci. Soc. Am. J. 76, 161–167. https://doi.org/10.2136/sssaj2011.0078 (2012).ADS  CAS  Article  Google Scholar  54.He, H. The current situation and development trend of organophosphorus pesticide industry. World Pestic. 30, 29–33. https://doi.org/10.3969/j.issn.1009-6485.2008.06.005 (2008).Article  Google Scholar  55.Yuan, S. et al. Screening of lactic acid bacteria for degrading organophosphorus pesticides and their potential protective effects against pesticide toxicity. Food Sci. Technol. 147, 111672. https://doi.org/10.1016/j.lwt.2021.111672 (2021).CAS  Article  Google Scholar  56.Yan, J., Wu, Q., Zhu, J., Zhang, L. & Li, J. Experimental research on nitrogen management based on emission controlling for paddy field. J. Soil Water Conserv. 32, 229–236. https://doi.org/10.13870/j.cnki.stbcxb.2018.02.034 (2018).Article  Google Scholar  57.Zhang, L. et al. Effects of irrigation and fertilization on nitrogen and phosphorus runoff from paddy field. J. Soil Water Conserv. 25, 7–12. https://doi.org/10.13870/j.cnki.stbcxb.2011.06.010 (2011).CAS  Article  Google Scholar  Page 2 Scientific Reports (Sci Rep) ISSN 2045-2322 (online)
https://www.nature.com/articles/s41598-021-02521-7