Multiview confocal super-resolution microscopy

1.Pawley, J. B. (ed.) Handbook of Biological Confocal Microscopy 3rd edn (Springer, 2006).2.Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G., Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).CAS  Article  Google Scholar  3.Baumgart, E. & Kubitscheck, U. Scanned light sheet microscopy with confocal slit detection. Opt. Express 20, 21805–21814 (2012).ADS  Article  Google Scholar  4.Kumar, A. et al. Using stage- and slit-scanning to improve contrast and optical sectioning in dual-view inverted light-sheet microscopy (diSPIM). Biol. Bull. 231, 26–39 (2016).CAS  Article  Google Scholar  5.Guo, M. et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. 38, 1337–1346 (2020).CAS  Article  Google Scholar  6.Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974).ADS  Article  Google Scholar  7.Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59 (1972).ADS  Article  Google Scholar  8.Descloux, A., Grußmayer, K. S. & Radenovic, A. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods 16, 918–924 (2019).CAS  Article  Google Scholar  9.Chen, F., Tillberg, P. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).ADS  CAS  Article  Google Scholar  10.He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. In 2017 IEEE Conf. Computer Vision (ICCV) (eds Ikeuchi, K. et al.) 2980–2988 (2017).11.Lin, T.-Y. et al. Microsoft COCO: common objects in context. In Computer Vision – CCV 2014 (eds Fleet, D. et al.) 740–755 (Springer, 2014).12.Kosmach, A. et al. Monitoring mitochondrial calcium and metabolism in the beating MCU-KO heart. Cell Rep. 37, 109846 (2021).13.Wu, Y. et al. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 108, 17708–17713 (2011).ADS  CAS  Article  Google Scholar  14.Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).CAS  Article  Google Scholar  15.Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).CAS  Article  Google Scholar  16.Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013).CAS  Article  Google Scholar  17.Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc. 9, 2555–2573 (2014).CAS  Article  Google Scholar  18.Duncan, L. H. et al. Isotropic light-sheet microscopy and automated cell lineage analyses to catalogue Caenorhabditis elegans embryogenesis with subcellular resolution. J. Vis. Exp. 148, e59533 (2019). Google Scholar  19.Towlson, E. K., Vértes, P. E., Ahnert, S. E., Schafer, W. R. & Bullmore, E. T. The rich club of the C. elegans neuronal connectome. J. Neurosci. 33, 6380–6387 (2013).CAS  Article  Google Scholar  20.White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. B 314, 1–340 (1986).ADS  CAS  PubMed  Google Scholar  21.Armenti, S. T., Lohmer, L. L., Sherwood, D. R. & Nance, J. Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins. Development 141, 4640–4647 (2014).CAS  Article  Google Scholar  22.Wu, Y. & Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods 15, 1011–1019 (2018); correction 16, 205 (2019).CAS  Article  Google Scholar  23.Fischer, R. S., Gardel, M. L., Ma, X., Adelstein, R. S. & Waterman, C. M. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol. 19, 260–265 (2009).CAS  Article  Google Scholar  24.York, A. G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126 (2013).CAS  Article  Google Scholar  25.Gambarotto, D. et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 16, 71–74 (2019).CAS  Article  Google Scholar  26.Tabara, H., Motohashi, T. & Kohara, Y. A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. Nucleic Acids Res. 24, 2119–2124 (1996).CAS  Article  Google Scholar  27.Chen, J. et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat. Methods 18, 678–687 (2020).Article  Google Scholar  28.Wu, Y. et al. Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica 3, 897–910 (2016).ADS  CAS  Article  Google Scholar  29.Barth, R., Bystricky, K. & Shaban, H. A. Coupling chromatin structure and dynamics by live super-resolution imaging. Sci. Adv. https://doi.org/10.1126/sciadv.aaz2196 (2020).Article  PubMed  PubMed Central  Google Scholar  30.Han, X. et al. A polymer index-matched to water enables diverse applications in fluorescence microscopy. Lab Chip 21, 1549–1562 (2021).CAS  Article  Google Scholar  31.Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).Article  Google Scholar  32.Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).ADS  CAS  Article  Google Scholar  33.Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl Acad. Sci. USA 109, E135–E143 (2011).Article  Google Scholar  34.Krüger, J.-R., Keller-Findeisen, J., Geisler, C. & Egner, A. Tomographic STED microscopy. Biomed. Opt. Express 11, 3139–3163 (2020).Article  Google Scholar  35.Wu, Y. et al. Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy. Nat. Commun. 8, 1452 (2017).ADS  Article  Google Scholar  36.Shroff, H., York, A., Giannini, J. P. & Kumar, A. Resolution enhancement for line scanning excitation microscopy systems and methods. US patent 10,247,930 (2019).37.Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019).CAS  Article  Google Scholar  38.Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).CAS  Article  Google Scholar  39.Royer, L. A. et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in live organisms. Nat. Biotechnol. 34, 1267–1278 (2016).CAS  Article  Google Scholar  40.Liu, T.-L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).ADS  Article  Google Scholar  41.Zheng, W. et al. Adaptive optics improves multiphoton super-resolution imaging. Nat. Methods 14, 869–872 (2017).CAS  Article  Google Scholar  Page 2 Full-width at half-maximum (FWHM) of illumination (first row) and FWHM derived from images of 100-nm diameter beads in x, y, z direction (latter rows) at different subregions of imaging field (#1–#9); n = 15 measurements were used to derive means ± standard deviations for each entry, all units in nm.
https://www.nature.com/articles/s41586-021-04110-0