1.Horning, N., Robinson, J. A., Sterling, E. J., Turner, W. & Spector, S. Remote sensing for ecology and conservation. Techniques in Ecology & Conservation Series (Oxford University Press, 2010).2.Li, J. et al. A review of remote sensing for environmental monitoring in China. Remote Sens. 12, 1130 (2020).ADS Google Scholar 3.Carter, W. D. & Paulson, R. W. Introduction to monitoring dynamic environmental phenomena of the world using satellite data collection systems. (U.S. Geological Survey, 1979).4.Nurdin, S., Mustapha, M. A. & Lihan, T. The relationship between sea surface temperature and chlorophyll-a concentration in fisheries aggregation area in the archipelagic waters of spermonde using satellite images. AIP Conf. Proc. 1571, 466–472 (2013).ADS Google Scholar 5.Ward, D., Phinn, S. R. & Murray, A. T. Monitoring growth in rapidly urbanizing areas using remotely sensed data. Prof. Geogr. 52, 371–386 (2000). Google Scholar 6.Singh, A. Review article: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989). Google Scholar 7.Dewan, A. M. & Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 29, 390–401 (2009). Google Scholar 8.Green, K., Kempka, D. & Lackey, L. Using remote sensing to detect and monitor land-cover and land-use change. Photogramm. Eng. Remote Sens. 60, 331–337 (1994). Google Scholar 9.Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 22, 2377–2400 (2001). Google Scholar 10.Rosenqvist, Å., Milne, A., Lucas, R., Imhoff, M. & Dobson, C. A review of remote sensing technology in support of the Kyoto Protocol. Environ. Sci. Policy 6, 441–455 (2003). Google Scholar 11.Liu, J. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 62, 158–175 (1997).ADS Google Scholar 12.Colwell, R. R. Global climate and infectious disease: The cholera paradigm. Science 274, 2025–2031 (1996).ADS PubMed CAS Google Scholar 13.Escobar, L. E. et al. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Trop. 149, 202–211 (2015).PubMed Google Scholar 14.Watts, N. et al. The 2019 report of The Lancet Countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate. Lancet 394, 1836–1878 (2019).PubMed Google Scholar 15.Alesheikh, A. A., Ghorbanali, A. & Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 4, 61–66 (2007). Google Scholar 16.Specter, C. & Gayle, D. Managing technology transfer for coastal zone development: Caribbean experts identify major issues. Int. J. Remote Sens. 11, 1729–1740 (1990). Google Scholar 17.Green, E. P., Mumby, P. J., Edwards, A. J. & Clark, C. D. A review of remote sensing for the assessment and management of tropical coastal resources. Coast. Manag. 24, 1–40 (1996). Google Scholar 18.NASA. MODIS (Moderate Resolution Imaging Spectroradiometer). https://modis.gsfc.nasa.gov/about/ (2021).19.Kilpatrick, K. A. et al. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 165, 27–41 (2015).ADS Google Scholar 20.Esaias, W. E. et al. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).ADS Google Scholar 21.Donlon, C. J. et al. Toward improved validation of satellite SST measurements for climate research. J. Clim. 15, 353–369 (2002).ADS Google Scholar 22.Minnett, P. J. Satellite infrared scanning radiometers — AVHRR and ATSR/M. in Microwave Remote Sensing for Oceanographic and Marine Weather-Forecast Models 141–163 (Springer Netherlands, 1990).23.Hillger, D. et al. First-Light Imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 94, 1019–1029 (2013).ADS Google Scholar 24.O’Brien, J. From MODIS to VIIRS – Making the Switch for Air Quality Professionals. NASA Earth Science/Applied Science https://appliedsciences.nasa.gov/our-impact/news/modis-viirs-making-switch-air-quality-professionals (2020).25.Minnett, P. J., Evans, R. H., Podestá, G. P. & Kilpatrick, K. A. Sea-surface temperature from Suomi-NPP VIIRS: Algorithm development and uncertainty estimation. in SPIE 9111, Ocean Sensing and Monitoring VI (eds. Hou, W. W. & Arnone, R. A.) 91110C (2014).26.Drusch, M. et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 120, 25–36 (2012).ADS Google Scholar 27.Donlon, C. et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 88, 1197–1214 (2007).ADS Google Scholar 28.NOAA. Ocean Facts: Why do scientists measure sea surface temperature? https://oceanservice.noaa.gov/facts/sea-surface-temperature.html (2020).29.Wei, G. F., Tang, D. L. & Wang, S. Distribution of chlorophyll and harmful algal blooms (HABs): A review on space based studies in the coastal environments of Chinese marginal seas. Adv. Sp. Res. 41, 12–19 (2008).ADS CAS Google Scholar 30.O’Reilly, J. E. et al. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 103, 24937–24953 (1998).ADS Google Scholar 31.Hu, C., Lee, Z. & Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean. 117, C01011 (2012).ADS Google Scholar 32.Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. 113, E5062–E5071 (2016).PubMed PubMed Central CAS Google Scholar 33.Lipp, E. K., Huq, A. & Colwell, R. R. Effects of global climate on infectious disease: The Cholera model. Clin. Microbiol. Rev. 15, 757–770 (2002).PubMed PubMed Central Google Scholar 34.Grimes, J. D. et al. Viewing marine bacteria, their activity and response to environmental drivers from orbit: Satellite remote sensing of bacteria. Microb. Ecol. 67, 489–500 (2014).PubMed PubMed Central Google Scholar 35.Shen, L., Xu, H. & Guo, X. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors 12, 7778–803 (2012).36.Hayashi, M., Jin, F. & Stuecker, M. F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 11, 1–10 (2020). Google Scholar 37.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).38.Minnett, P. J. et al. Sea-surface temperature measurements from the moderate-resolution imaging spectroradiometer (MODIS) on Aqua and Terra. in IEEE International Geoscience and Remote Sensing Symposium Proceedings. 2004 7, 4576–4579 (2004).39.Minnett, P. J. The validation of sea surface temperature retrievals from spaceborne infrared radiometers. in Oceanography from Space (Springer Netherlands, 2010).40.Minnett, P. J. & Corlett, G. K. A pathway to generating climate data records of sea-surface temperature from satellite measurements. Deep Sea Res. Part II Top. Stud. Oceanogr. 77–80, 44–51 (2012).ADS Google Scholar 41.Castaneda-Guzman, M., Mantilla-Saltos, G., Murray, K. A., Settlage, R. & Escobar, L. E. A database of global coastal conditions. Figshare https://doi.org/10.6084/m9.figshare.c.5660263.v1 (2021).42.R Core Team. R: A Language and Environment for Statistical Computing. (2020).43.NOAA. National Oceanic and Atmospheric Administration (NOAA) Coastal Watch. https://coastwatch.pfeg.noaa.gov/erddapinfo/ (2021).44.Castaneda-Guzman, M., Mantilla-Saltos, G., Murray, K. A., Settlage, R. & Escobar, L. E. Methods and code. Figshare https://doi.org/10.6084/m9.figshare.13708642.v4 (2021).45.Stanford. Best practices for file formats. https://library.stanford.edu/research/data-management-services/data-best-practices/best-practices-file-formats (2021).46.UCAR Community Programs. Network Common Data Form (NetCDF). https://www.unidata.ucar.edu/software/netcdf/ (2021).47.Michna, P. & Woods, M. RNetCDF: Interface to ‘NetCDF’ Datasets. (2019).48.Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020).49.ArcGIS. What is a raster data? https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/what-is-raster-data.htm (2021).50.United Nations. United Nations Convention on the Law of the Sea. 1833 U.N.T.S. 397 (1982).51.Tilstone, G. H. et al. Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea. Cont. Shelf Res. 65, 14–26 (2013).ADS Google Scholar 52.Hoge, F. E. et al. Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne Lidar results. Appl. Opt. 42, 2767-2771 (2003).ADS PubMed Google Scholar 53.Remer, L. A. Validation of MODIS aerosol retrieval over ocean. Geophys. Res. Lett. 29, 8008 (2002).ADS Google Scholar 54.Gentemann, C. L. Three way validation of MODIS and AMSR-E sea surface temperatures. J. Geophys. Res. Ocean. 119, 2583–2598 (2014).ADS Google Scholar 55.Fang, H., Wei, S. & Liang, S. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 119, 43–54 (2012).ADS Google Scholar 56.Hosoda, K., Murakami, H., Sakaida, F. & Kawamura, H. Algorithm and validation of sea surface temperature observation using MODIS sensors aboard terra and aqua in the western North Pacific. J. Oceanogr. 63, 267–280 (2007). Google Scholar 57.Hao, Y. et al. Validation of MODIS sea surface temperature product in the coastal waters of the Yellow Sea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 1667–1680 (2017).ADS Google Scholar 58.Sims, D. A. et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J. Geophys. Res. Biogeosciences 111 (2006).59.Miles, T. N. & He, R. Temporal and spatial variability of Chl-a and SST on the South Atlantic Bight: Revisiting with cloud-free reconstructions of MODIS satellite imagery. Cont. Shelf Res. 30, 1951–1962 (2010).ADS Google Scholar 60.Ma, S., Zhang, X., Ding, C., Han, W. & Lu, Y. Comparison of the spatiotemporal variation of Chl-a in the East China Sea and Bohai Sea based on long time series satellite data. in 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) 1–6 (2021).61.Watts, N. et al. The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet 6736 (2020).62.Moradi, M. & Kabiri, K. Spatio-temporal variability of SST and Chlorophyll-a from MODIS data in the Persian Gulf. Mar. Pollut. Bull. 98, 14–25 (2015).PubMed CAS Google Scholar 63.Golder, M. R. et al. Chlorophyll-a, SST and particulate organic carbon in response to the cyclone Amphan in the Bay of Bengal. J. Earth Syst. Sci. 130, 157 (2021).ADS CAS Google Scholar 64.Minnett, P. J., Evans, R. H., Kearns, E. J. & Brown, O. B. Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS). in IEEE International Geoscience and Remote Sensing Symposium vol. 2, 1177–1179 (IEEE, 2002).65.Qin, H., Chen, G., Wang, W., Wang, D. & Zeng, L. Validation and application of MODIS-derived SST in the South China Sea. Int. J. Remote Sens. 35, 4315–4328 (2014). Google Scholar 66.Saulquin, B., Gohin, F. & Garrello, R. Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll-a Data From 1998 to 2008 on the European Atlantic Shelf. IEEE Trans. Geosci. Remote Sens. 49, 143–154 (2011).ADS Google Scholar 67.Chen, J. & Quan, W. An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery. Environ. Monit. Assess. 185, 2243–2255 (2013).PubMed Google Scholar 68.Hanafin, J. A. & Minnett, P. J. Thermal profiling of the sea surface skin layer using FTIR measurements. in Gas Transfer at Water Surfaces 161–166 (Blackwell Publishing, 2002).69.Wong, E. W. & Minnett, P. J. The response of the ocean thermal skin layer to variations in incident infrared radiation. J. Geophys. Res. Ocean. 123, 2475–2493 (2018).ADS Google Scholar 70.Ward, B. Near-surface ocean temperature. J. Geophys. Res. 111, C02004 (2006).ADS Google Scholar 71.Kilpatrick, K. A., Podestá, G. P. & Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. Ocean. 106, 9179–9197 (2001).ADS Google Scholar 72.Hollstein, A., Segl, K., Guanter, L., Brell, M. & Enesco, M. Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images. Remote Sens. 8, 666 (2016).ADS Google Scholar 73.Luo, B., Minnett, P. J., Gentemann, C. & Szczodrak, G. Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. Remote Sens. Environ. 223, 8–20 (2019).ADS Google Scholar 74.Moore, T. S., Campbell, J. W. & Dowell, M. D. A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sens. Environ. 113, 2424–2430 (2009).ADS Google Scholar 75.Pieri, M. et al. Assessment of three algorithms for the operational estimation of [CHL] from MODIS data in the Western Mediterranean Sea. Eur. J. Remote Sens. 48, 383–401 (2015). Google Scholar 76.Tilstone, G. H. et al. Performance of Ocean Colour Chlorophyll-a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic. Remote Sens. Environ. 260, 112444 (2021).ADS Google Scholar Page 2 Database Title Originator Access Dataset ID Temporal range Temporal resolution Spatial resolution Type Format SST, AQUA_MODIS, L3m.MO.SST.sst.4 km, Masked, SMI, NASA GSFC OBPG, R2019.0, Global, 0.04166°, NASA Earth Observing System https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdMH1sstdmdayR20190SQ.html erdMH1sstdmdayR20190SQ 2003-2020 Monthly Composite 4 km Remotely-sensed NetCDF Chlorophyll-a, Aqua MODIS, NPP, L3SMI, Global NASA Earth Observing System https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdMH1chlamday.html erdMH1chlamday 2003-2020 Monthly Composite 4 km Remotely-sensed NetCDF Original satellite-based imagery was collected by the MODIS instrument, part of the NASA Earth Observing System, and downloaded through the NASA’s ERDP server at a temporal resolution of monthly composite, from 2003 to 2020 and at a 4 km spatial resolution as NetCDF files.
https://www.nature.com/articles/s41597-021-01081-9
A database of global coastal conditions
